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e Early and elevated cell signaling is associated with early
hospital discharge

e Phenotypic and cell signaling changes accompany COVID-19
disease resolution

e Elevation of Treg cells and basophils are unique to ventilation
recovery

e Immune resolution features define patients with better clinical
outcomes at day 0
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In brief

Immunological changes during COVID-19
resolution remain unknown. Burnett,
Okholm, Tenvooren et al. analyze longi-
tudinal blood samples from hospitalized
COVID-19 patients by single-cell mass
cytometry, identifying a conserved set of
immunological processes and cell
signaling states that uniquely accompany
COVID-19 recovery and associate with
better clinical outcomes at time of
admission.
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SUMMARY

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immuno-
logical changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states
at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia
and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune com-
positions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital
discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduc-
tion in immune cell signaling across cell types that accompanied disease resolution and discharge. These
changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied
recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore,
although patients have heterogeneous immunological baselines and highly variable disease courses, a core
immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.

INTRODUCTION

SARS-CoV-2 and the resulting disease COVID-19 has resulted in
over 517,000,000 infected individuals and more than 6,200,000
deaths globally as of May 15, 2022 (World Health Organization,
2021a). In a prospective study of adults confirmed with SARS-
CoV-2, 91% of patients were asymptomatic or were outpatients
with mild illness, while 9% required inpatient care (Logue et al.,
2021). These patients can develop severe diseases, including
pneumonia, acute respiratory distress syndrome (ARDS), or mul-
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tiple organ failure, and often require supplemental oxygen sup-
port or, in the most critical cases, mechanical ventilation.
Although a small percentage of all infected patients succumb
to the disease (1.3%) (Centers for Disease Control and Preven-
tion, 2021), the majority of hospitalized patients successfully
combat and clear the infection. Many studies have focused on
features defining the subset of patients who ultimately succumb
to the disease; however, it is also essential to characterize suc-
cessful resolution and identify conserved immune features dur-
ing this interval.
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The immunopathology of COVID-19 is broadly characterized
by lymphopenia, lymphocyte dysfunction, abnormalities of
innate immune cells, and increased cytokine production (Lucas
et al., 2020; Mann et al., 2020; Mathew et al., 2020; Yang et al.,
2020). Early observations of serum cytokine levels in COVID-19
patients revealed high levels of circulating IL-6, generating the
hypothesis of an IL-6-driven cytokine storm and resulting immu-
nopathology (Moore and June, 2020; Yang et al., 2020). Howev-
er, other studies suggest that IL-6 levels do not differ between
severe and moderate COVID-19 patients (Wilson et al., 2020)
and may even be lower in severe COVID-19 than in other similar
critical illnesses (Sinha et al., 2020). While a meta-analysis eval-
uating IL-6-neutralizing therapies concluded that they may pro-
vide some benefit, individual clinical trials report conflicting re-
sults, raising questions about when and for whom they should
be used (Tsai et al., 2020; RECOVERY Collaborative Group,
2021; Rosas et al., 2021; WHO Rapid Evidence Appraisal for
COVID-19 Therapies (REACT) Working Group et al., 2021).
Corticosteroid treatment is another strategy to modulate im-
mune signaling and has been broadly adopted based on the re-
sults of prospective randomized clinical trials (Angus et al.,
2020; RECOVERY Collaborative Group et al., 2021). However,
their benefit may be modest (Wagner et al., 2021) and vary
across different subsets of patients (Chen et al., 2021; Sinha
et al.,, 2021; Wagner et al., 2021). Additionally, insufficient
type | interferon (IFN) signaling and autoantibodies that inhibit
type | IFN have been linked to a subset of severe cases of
COVID-19, suggesting that type | immune responses and IFN
signaling are likely protective (Zhang et al., 2020a; Asano
et al., 2021; Chang et al., 2021; Combes et al., 2021; van der
Wijst et al., 2021; Wang et al., 2021). High serum cytokine
levels, along with observations of broad immunological misfir-
ing, have been observed across patient subsets, indicating a
delicate balance between productive and destructive immune
responses and suggesting the importance of evaluating im-
mune cell signaling. However, it remains unclear what, if any,
immune cell signaling is protective and how immune cell
signaling dynamics change over time in patients who resolve
or fail to resolve COVID-19.

While many studies have made significant contributions to our
understanding of the immune system and its relation to COVID-
19, most analytical approaches are cross-sectional and describe
the immunological differences between COVID-19 severity
groups defined by clinical metrics, such as the WHO score. In
comparison, longitudinal studies are uniquely capable of assess-
ing changes in the immune response during disease progression
or resolution over time. Elucidating the immunological events
that accompany successful disease resolution is essential to in-
forming the management of patient care and contextualizing the
deviations from successful resolution that characterize the most
severe disease cases. Because the infection timeline is highly
variable, and human immunological responses are diverse, un-
derstanding immunological dynamics during this specific recov-
ery period requires longitudinal monitoring and high-dimensional
data from a large cohort of patients. Here, we investigated intra-
patient immunological changes across clinically relevant time
points to identify changes inimmune responses that accompany
effective COVID-19 resolution. We obtained 230 longitudinal pe-
ripheral blood samples from 81 hospitalized COVID-19 patients,
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7 patients with pneumonia and/or sepsis unrelated to SARS-
CoV-2 (COVID-19-negative patients), and 11 healthy individuals.
To investigate changes in immune cell signaling states over time,
we utilized mass cytometry with a panel of antibodies specific for
immune cell phenotyping and for measuring phosphorylated cell
signaling proteins. We identified distinct immune cell composi-
tion and signaling states in COVID-19 patients compared to
COVID-19-negative patients and healthy individuals. Addition-
ally, we discovered a conserved and coordinated immune
response, including changes in myeloid and T cell abundance
and phenotypes, as well as a reduction in pan-immune cell
signaling, that accompanies COVID-19 resolution and hospital
discharge. Furthermore, these and other features were relevant
to resolution in the most severe mechanically ventilated patients,
and these immune cell states correlated with better clinical out-
comes at time of admission. Our findings indicate that, although
patients have heterogeneous immunological baselines and high-
ly variable disease courses, there exists a core immunological
trajectory that defines recovery from severe SARS-CoV-2 infec-
tion. Our results provide a working model of a successful im-
mune response trajectory among patients with COVID-19
requiring hospitalization, deviations from which are associated
with extended hospitalization and mortality.

RESULTS

Longitudinal peripheral blood analysis was performed in
hospitalized COVID-19-positive and COVID-19-negative
patients

To investigate the composition of circulating immune cells and
the cell signaling states that characterize SARS-CoV-2 infections
and distinguish it from other respiratory infections, we collected
longitudinal peripheral blood (PB) samples from COVID-19 pa-
tients and COVID-19-negative patients with pneumonia and/or
sepsis (PCR negative for SARS-CoV-2) admitted to UCSF Med-
ical Center and Zuckerberg San Francisco General Hospital. PB
samples and corresponding patient demographics and clinical
parameters, e.g., World Health Organization (WHO) severity
scores (World Health Organization, 2021b), ventilation duration,
and hospital length of stay, were collected throughout inpatient
care (Tables S1, S2, and S3). PB samples from 11 healthy indi-
viduals were obtained as controls (Table S4), though median
age was younger than for hospitalized groups. Whole blood
was fixed using Smart Tube proteomic stabilizer and stored at
-80°C. All samples were processed, stained, and analyzed by
mass cytometry to quantify the expression of 30 protein markers
and 14 phosphorylated signaling molecules (Table S5). Samples
that met quality control standards (methods) were normalized
across batches (methods, Figure S1A) resulting in 205 samples
from 81 COVID-19 patients, 14 samples from 7 COVID-19-nega-
tive patients, and single samples from each of 11 healthy individ-
uals (Figure 1A and S1B, Table S6). COVID-19 patients were
classified into COVID-19 severity groups based on their WHO
score at day of sampling (3: mild, 4: moderate, 5-7: severe)
(World Health Organization, 2021b). We manually gated 38 ca-
nonical immune cell populations (Figure S1C) and evaluated im-
mune cell population frequencies, protein expression patterns,
and immune cell signaling pathways specific to COVID-19
course escalation and resolution.
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Figure 1. COVID-19 immune phenotype and composition is highly divergent from healthy individuals and has distinct features compared to
other severe respiratory infections

(A) Overview of cohort. Patients were admitted to the hospital and enrolled in the study at day 0. Peripheral blood samples were collected up until day 28 of
hospitalization. Corresponding clinical parameters and WHO scores were documented. 205 samples from 81 COVID-19-positive patients were included in the
final cohort. Additionally, 14 samples from 7 COVID-19-negative patients with other respiratory diseases and 11 healthy individuals were included in the study. On
average, we obtained 2 (range of 1-7) usable blood samples per patient.

(B) t-SNE plot of all patient samples at day 0 (n = 83) using phenotypic markers colored by major immune cell populations. Upper right panel: t-SNE plot of healthy
samples (n = 11); middle right panel: t-SNE plot of COVID-19-negative samples (n = 6); lower right panel: t-SNE plot of COVID-19-positive samples (n = 66).
(C) Immune cell population abundance at day 0 in COVID-19-positive (+), COVID-19-negative (-) patients, and healthy individuals (H). Nominal p values obtained
by Wilcoxon Rank Sum Test, followed by Benjamini-Hochberg correction with FDR < 0.1.

(D) Correlation between cell population abundance at day 0 and clinical outcomes, e.g., ventilation duration (vent duration) and hospital length of stay (hosp los)
for COVID-19-positive patients (n = 65, excluding the patient that is hospitalized for 260 days). Correlation estimates are obtained by Spearman correlation.
(E) Protein expression on neutrophils (F) in COVID-19-positive (COV+), COVID-19-negative (COV-) patients, and healthy controls at day 0 (Wilcoxon Rank Sum
Test, Benjamini-Hochberg correction with FDR < 0.1).

(F) Frequency of monocyte subsets in COVID-19-positive (COV+), COVID-19=negative (COV-) patients, and healthy controls at day 0. Nominal p values obtained
by Wilcoxon Rank Sum Test. See also Figure S1.
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Immune cell compositions in COVID-19 patients, COVID-
19-negative patients, and healthy individuals are
distinct on day of admission

First, we characterized the immunological landscape of COVID-
19 patients, COVID-19-negative patients (critically ill, mechani-
cally ventilated controls with pneumonia and/or sepsis unrelated
to SARS-CoV-2 infection), and healthy individuals to assess
immunological signatures that may be specific to COVID-19 at
day of admission (day 0). Dimensionality reduction by t-distrib-
uted stochastic neighbor embedding (t-SNE) using only pheno-
typic markers revealed distinct immune cell compositions
between COVID-19-positive, COVID-19-negative, and healthy
individuals (Figure 1B). Consistent with previous studies,
COVID-19 patients exhibited a significantly different immune
cell composition compared with healthy individuals, with signifi-
cant frequency differences across almost all manually gated im-
mune cell populations (FDR < 0.1, Figure 1C) (Mathew et al.,
2020). To determine modules of immune changes, we evaluated
whether distinct immune cell populations correlate with each
other as well as with patient demographics or clinical parameters.
We found a coordinated adaptive immune response in which
several T cell subsets and B cell frequencies were positively
correlated with one another (Figure 1D). In contrast, the innate
arm demonstrated a dichotomous relationship, with an anti-cor-
relation between neutrophil and monocyte frequencies. Addition-
ally, monocyte frequencies at day 0 were positively correlated
with T cell subsets and negatively correlated with ventilation
duration (Figure 1D), suggesting there may be a coordinated im-
mune response associated with better clinical outcome.

Monocyte and neutrophil composition reveal distinct
compartmental shifts in the innate immune arm of
COVID-19 infection

Large shifts in innate immune compartments were evident be-
tween COVID-19 patients, patients with other respiratory infec-
tions, and healthy controls (Figure 1B); therefore, we further
investigated the composition of neutrophils and monocytes.
While neutrophil frequency was not significantly different
between COVID-19 patients and the healthy individuals
(Figures 1C and S1D), we found that a variety of proteins were
altered in their expression on neutrophils across groups. Neutro-
phils from COVID-19 patients exhibited significantly increased
expression of CD11c, CD14, CD16, and PD-L1, suggesting a
highly activated and inflammatory neutrophil phenotype in
COVID-19 patients (FDR < 0.1, Figure 1E). Additionally, while
the frequency of all monocytes was comparable between groups
(FDR > 0.1, Figure 1C), composition of monocyte subsets
(defined as classical, intermediate, and non-classical) was signif-
icantly different between patients with COVID-19 and other res-
piratory infections compared with healthy individuals (FDR < 0.1,
Figure 1C). Patients exhibited a significant increase in the fre-
quency of intermediate monocytes along with a relative
decrease in classical monocytes (Figure 1F).

Cross-sectional analysis of COVID-19 severity groups
reveals few immunological features that distinguish
severity states

We next evaluated the immunological differences between
COVID-19 severity groups across time (Figure S1E). We found
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no significant differences between severity groups at day 0
(FDR > 0.1, Figure S1F) and only few population differences at
day 4 and day 7 (FDR < 0.1, Figure S1G). Within each severity
group, comparisons across time showed that plasmablasts con-
tract from day 0 to day 7 in the majority of severe COVID-19 pa-
tients (FDR < 0.1, Figure STH), while activated CD4 T cells are
upregulated from day 0 to day 7 in mild COVID-19 patients
(FDR < 0.1, Figure S1l). The paucity of differences between
severity groups suggested that significant variability may exist
in the timing of disease escalation and resolution across individ-
uals and therefore the immunological processes that mediate
these changes over time.

Early, coordinated, and activated immune cell signaling
is associated with early hospital discharge in COVID-19
patients

To gain insights into key immune cell signaling modules associ-
ated with COVID-19, we measured the phosphorylation state of
14 signaling molecules across all immune cell subsets (Fig-
ure 2A). First, we evaluated the median expression of phosphor-
ylated signaling proteins across all CD45" hematopoietic PB
cells in COVID-19-positive, COVID-19-negative, and healthy in-
dividuals at day 0. Differential expression analysis revealed five
signaling molecules (pSTAT1, pPLCy2, pZAP70/pSyk, pCREB,
and pSTAT3) that were upregulated in COVID-19 patients
compared with healthy individuals (FDR < 0.1, Figure 2B). To
determine whether a specific cell type was driving the higher
signaling state in COVID-19 patients, we evaluated the median
phosphorylation state of the respective signaling molecules
within manually gated immune cell subsets. We found higher
median signaling across the majority of cell subsets, showing
that immune cell signaling states are coordinated across most
cell types simultaneously and not driven by signaling within a
specific cell type (Figure S2A). Consistent with our observations
for immune cell populations, we observed no signaling differ-
ences within and across severity groups at day 0, day 4, and
day 7 (FDR > 0.1, Figures S2B and S2C).

To investigate coordinated signaling modules in CD45™ cells,
we evaluated correlations between the expression of signaling
molecules at day 0. For COVID-19 patients, we observed a coor-
dinated, positive signaling response (Figure 2C), which was ab-
sent in patients with other respiratory infections or sepsis (Fig-
ure 2D). To evaluate the relevance of this early, coordinated,
and activated signaling signature, we examined associations be-
tween the expression of signaling molecules at day 0 and clini-
cally relevant outcomes. By splitting the patients into two groups
based on time until discharge, we found that the expression of 8
of the 14 signaling molecules were significantly higher at day 0 in
patients that were discharged early (<30 days, n = 59)
compared with patients that were discharged late (> 30 days,
n=7)(FDR < 0.1, Figure 2E). No signaling molecules were higher
at day 0 in patients who were discharged late (Figure 2E). We
also observed an overall trend of negative correlations between
median signaling in CD45" cells and hospital length of stay as a
continuous variable, though these did not reach statistical signif-
icance (FDR > 0.1, Figure S2D). Consistent with these findings,
for patients on mechanical ventilation, we observed an overall
trend of negative correlations between CD45" signaling and
ventilation duration, with the strongest correlations observed
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Figure 2. Early, coordinated, and activated immune cell signaling is associated with early hospital discharge in COVID-19 patients

(A) Signaling schematic. Stars denote phosphorylated signaling molecules that are measured in the CyTOF panel.

(B) Expression of signaling molecules in CD45* CD235a/b-negative peripheral blood immune cells at day 0 in COVID-19-positive (+), COVID-19-negative (-) pa-
tients, and healthy individuals (H). Nominal p values obtained by Wilcoxon Rank Sum Test, followed by Benjamini-Hochberg correction with FDR < 0.1.

(C and D) Correlation between signaling molecule expressions at day 0 for COVID-19+ patients (n = 66) (C) and COVID-19- patients (n = 6) (D). Correlation es-
timates are obtained by Spearman correlation.

(E) Differential expression analysis of signaling molecules at day 0 between COVID-19+ patients that are discharged early (< 30 days of admission, n = 59) and
late (>30 days after admission, n = 7). Nominal p values obtained by Wilcoxon Rank Sum Test. The log2 fold changes (late versus early) are plotted against the
negative log10 (nominal p values). Colors indicate whether signaling molecules are significantly higher in early discharged patients (blue) or late discharged pa-
tients (purple) or not differentially expressed (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

(F) Correlation between pSTAT3, pERK, pS6, and pSTAT6 signaling at day 0 and ventilation duration for ventilated COVID-19+ patients (n = 16). Correlation es-
timates and nominal p values are obtained by Spearman correlation, followed by Benjamini-Hochberg correction. Blue lines and gray shadows represent the
best-fitted smooth line and 95% confidence interval. See also Figure S2.
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Figure 3. Conserved immunological processes and changes in cell signaling states accompany disease resolution and discharge
(A) lllustration of intra-patient analysis from admission to discharge for patients who are successfully discharged from the hospital within 30 days of admission

(n=232).

(legend continued on next page)
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for pSTATS, pERK, pS6 (nominal p value < 0.05, FDR = 0.1, Fig-
ure 2F), and pSTAT6 (nominal p value < 0.05, FDR = 0.12, Fig-
ure 2F). Median pSTAT3 expression in several cell subtypes
was significantly correlated with ventilation duration (FDR <
0.1, Figure S2F), and other cell type-specific signaling features
exhibited negative correlations as well, though these did not
reach statistical significance (FDR > 0.1, Figure S2F). Corre-
spondingly, signaling within cell subtypes demonstrated a broad
positive correlation with each other (Figure S2G), indicating
coordinated signaling states across cell populations. Taken
together, our results show that coordinated high signaling at
day of admission is associated with shorter length of hospitaliza-
tion and mechanical ventilation.

Conserved immunological processes and changes in
cell signaling states accompany disease resolution and
discharge

Although cross-sectional analysis can provide insights into the
immunological state of COVID-19 patients and severity groups,
the natural heterogeneity of patient immune responses and sig-
nificant differences in their disease time courses may obscure
immunological processes that mediate recovery. Therefore, we
aimed to identify conserved changes within patients, over time,
that are tied to clinically relevant outcomes. Given that the major-
ity of our patients successfully recovered from the infection,
albeit after differing lengths of hospitalization, we investigated
immunological changes that occurred within patients from time
of admission (tp1) to time of discharge (tp2) from the hospital
(Figures 3A and S3A). For this analysis, we included patients
who were discharged within 30 days of admission across all dis-
ease severity states at time of enrollment (n = 32), allowing us to
identify conserved features among all COVID-19 patients who
successfully recover. A variety of immune cell subsets signifi-
cantly changed in frequency between tp1 and tp2 (FDR < 0.1,
Figure 3B). Monocytes, as well as activated CD4 and CD8
T cells, significantly increased at the time of discharge (tp2) as
patients resolved the infection (Figure 3C). Conversely, neutro-
phils and conventional type 1 dendritic cells (cDC1s) significantly
decreased in frequency by time of discharge (Figure 3C). For
most COVID-19 patients, the overall composition of immune
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cells became more like that of healthy individuals at the time of
discharge compared with the time of enrollment (distance be-
tween PCA centroids: healthy versus tp1 = 3.2, healthy versus
tp2 = 2.8, Figure 3D). However, some immune cell populations
exhibited deviations away from healthy at the time of discharge,
most notably activated CD4 and CD8 T cells (CD38" HLA-DR+)
as well as monocytes (Figure 3E). This indicates that the immune
state at the time of discharge is characterized by the restoration
of certain elements of the immune response that were perturbed
early in infection alongside a continued immunological process,
including an expansion of activated T cells, that proceeds past
the time patients stabilize for discharge.

Patients who successfully resolve COVID-19 have
robust pan-hematopoietic signaling and cytotoxic
activated T cells at day of admission

To obtain more granular insights into the immunological pertur-
bations that accompany COVID-19 recovery, we evaluated
phenotypic changes and signaling dynamics within immune
cell populations that changed during disease resolution. We
focused on cell populations whose frequencies move away
from relative frequencies observed in healthy controls, indicating
they continue to have a dynamic response during infection reso-
lution. Activated CD4 and CD8 T cells exhibited a reduction in the
expression of GranzymeB and CD45RA as patients transition
from early infection to discharge (FDR < 0.1, Figures 3F and
S3B), consistent with a transition from more activated effector
cells to more of a memory phenotype. We also observed a signif-
icant change in the phenotype of circulating monocytes, which
expressed high PD-L1 at time of admission but higher expres-
sion of CD4, CD11c, and HLA-DR at time of discharge
(FDR < 0.1, Figures 3G, 3H, and S3B). Similarly, we observed a
reduction in PD-L1 expression on neutrophils at time of
discharge (FDR < 0.1, Figure S3B).

We then analyzed the median values of phosphorylated
signaling molecules within the relevant immune cell subtypes
to evaluate changes in cell signaling during this resolution phase.
A variety of cell signaling proteins were significantly downregu-
lated within the key immune cell populations at time of discharge
(FDR < 0.1, Figure 3l). Several signaling molecules changed in a

(B) Paired differential abundance analysis of immune cell populations between the first (tp1) and second (tp2) timepoints illustrated in 3A (paired Wilcoxon Rank
Sum Test). The log2 fold changes (tp2 versus tp1) are plotted against the negative log10 (nominal p values). Colors indicate if cell populations are significantly
down- (blue) or upregulated (purple) from tp1 to tp2 or not differentially expressed (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

(C) Frequency of monocytes, neutrophils, cDC1, and CD8 activated T cells at tp1 and tp2. Lines connect samples from the same patient. Nominal p values
obtained by paired Wilcoxon Rank Sum Test. CD8 activated T cells and cDC1 cells are shown as a percentage of parent populations (e.g., CD8 T cells and
dendritic cells, respectively), while monocytes and neutrophils are shown as a percentage of all cells.

(D) Principal component analysis of significant immune cell subsets in 3B for tp1, tp2, and healthy controls. Immune cell directionality and contribution to PCA
space denoted on right (top). Summary ellipsoid of tp1, tp2, and healthy patients in PCA space on right (bottom).

(E) Population frequencies of significant immune cell subsets in 3B for tp1, tp2, and healthy controls. Stars indicate median value for each group. Cell populations
are highlighted in green if tp2 is closer to healthy than tp1 and highlighted in yellow if tp2 is moving away from healthy.

(F and G) Protein expression on CD8- and CD4 activated T cells (F) and on monocyte subsets (G) at tp1 and tp2. Mean protein expression values have been log10
transformed, scaled, and centered on heatmap. Bars indicate mean protein expression across all samples. Only significant proteins are shown (Wilcoxon Rank
Sum Test, Benjamini-Hochberg correction with FDR < 0.1).

(H) Scatter plots of CD11c and HLA-DR expression on non-classical monocytes in patient 1344 at day O (top) and day 7 (bottom).

(I) Expression of signaling molecules in significant immune cell subsets in 3B at tp1 and tp2. Median signaling expression values have been centered on heatmap.
Only significant signaling molecules are shown (Wilcoxon Rank Sum Test, Benjamini-Hochberg correction with FDR < 0.1 within each cell type).

(J) Expression of pTBK1 in CD8 activated T cells, and pSTAT3 expression in CD8 activated T cells and classical monocytes at tp1 and tp2. Lines connect samples
from the same patient. Nominal p values obtained by paired Wilcoxon Rank Sum Test.

(K) Expression of PD-L1 on non-classical monocytes at tp1 and tp2. Lines connect samples from the same patient. Nominal p values obtained by paired Wilcoxon
Rank Sum Test. See also Figure S3.
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Figure 4. Immune changes associated with COVID-19 resolution differ in patients who are hospitalized for more than 30 days or die from

COVID-19

(A) llustration of intra-patient analysis of patients who are hospitalized for >30 days (n = 6) and patients who die (n = 5).
(B) Median cell population frequencies at tp1 (red) and tp2 (blue) for patients who are discharged < 30 days, >30 days, and deceased. Error bars represent

standard errors.

(C) Representative scatter plots of activated CD8 T cells (defined by CD38 and HLA-DR expression), at tp1 (left) and tp2 (right) for patients who are discharged

< 30 days, >30 days, and deceased.

(D) Magnitude of change illustrated by log2FC*-log10 (p value) of signaling molecules (identified in Figure 3l) for patients who are discharged within 30 days
(<30 days, green), discharged after 30 days (>30 days, blue), and die (red). Nominal p values obtained by paired Wilcoxon Rank Sum Test.

(legend continued on next page)
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coordinated fashion across different immune cell types (e.g.,
pTBK1, pERK, and pSTAT3), with the broadest signaling
changes observed in activated CD8 T cells and monocyte sub-
sets (FDR < 0.1, Figures 3l and 3J). These observations are
consistent with previous studies describing the relationship be-
tween IL-6 expression and pSTAT3 signaling and subsequent
upregulation of PD-L1 in monocytes (FDR < 0.1, Figures 3F
and 3K) (Zhang et al., 2020b). Although signaling trajectories
trended in the same direction among most patients (Figure S3C),
we did not observe a clear trend toward healthy individuals (Fig-
ure S3D), likely explained by the expression variability and diffi-
culty of measuring signaling molecules in rare populations in
healthy individuals, e.g., activated CD8 T cells (Figure 3E). Taken
together, our results suggest that a coordinated set of changes in
immune cell abundances and signaling states occur in patients
who successfully resolve COVID-19.

Immune changes associated with COVID-19 resolution
differ in patients who are hospitalized for more than

30 days or die from COVID-19

To determine if the immune features identified in the resolution
phase are specific to patient recovery, we analyzed patients
who had delayed disease resolution, i.e. who remained hospital-
ized for more than 30 days (“late discharge”; n = 6) or who died
from COVID-19 (“ultimately deceased”; n = 5) (Figures 4A and
S4A). First, we evaluated changes in immune cell population fre-
quencies occurring within these patients but found no significant
changing populations between tp1 and tp2 for either group
(FDR > 0.1, Figure S4B). Focusing on cell populations that signif-
icantly changed between these time points in patients who were
discharged in <30 days, patients with poor clinical outcomes
exhibited different patterns over time as well as greater variability
(Figures 4B and 4C, S4C, and S4D). Next, we evaluated signaling
dynamics in late discharge and ultimately deceased patients
to determine if the observed changes in early discharge
patients were evident. In contrast to patients resolving COVID-
19 in <30 days, which exhibited consistent changes from high
to low signaling states over time, we observed no significant
changes between tp1 and tp2 for late discharged and ultimately
deceased patients (FDR > 0.1, Figures 4D, S4F, S4G, and S4H).
Instead, these patients exhibited discoordinate signaling direc-
tionality in activated CD8 T cells (Figures 4E and S4l), a
complete lack of pS6 signaling in cDC1s (Figure 4E), and mar-
ginal changes in monocyte signaling states over time
(Figures 4F and S4l). When the late discharged patients were
within 30 days of discharge, the trajectory of several immune res-
olution features, e.g., monocytes, neutrophils, and signaling
molecules, did resemble the recovery trajectories in patients
hospitalized <30 days, suggesting that the resolution phase en-
gages in these patients as well before they are discharged
(Figures 4G and S4J). Taken together, these results indicate
that changes in cell signaling evident in early discharge patients
over time were not evident in patients with poor clinical out-
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comes. Furthermore, these results suggest that the immune pro-
cesses observed during resolution through discharge are spe-
cific to a successful response against COVID-19.

Core immune resolution features characterize
COVID-19 patients recovering from ventilation

Having established immune features that accompany COVID-19
resolution among our entire patient cohort, we next examined
the immunological changes within only the most severe patients
who required mechanical ventilation (Figure S5A). We analyzed
immunological changes between three key time points: the first
time point after a patient was intubated (tp1), the last time point
before they were extubated (tp2), and the first time point after a
patient was successfully extubated (tp3) (Figure 5A). This al-
lowed us to evaluate the immunological dynamics that occur
during ventilation (tp1 versus tp2) and during successful recov-
ery from intubation (tp1 versus tp3). First, we analyzed the
within-patient immune cell frequency changes between tp1
and tp3 (n = 9, Figure S5B). Consistent with patients resolving
COVID-19, monocytes and activated CD4 and CD8 T cells signif-
icantly increased in frequency, while neutrophil frequency
decreased during ventilation resolution (FDR < 0.1, Figures 5B
and 5C). Additionally, ventilation resolution was characterized
by an increase in CD4 regulatory T cells (Tregs) and basophils
at time of recovery (FDR < 0.1, Figure 5B). These changes
were collectively associated with a coordinated trajectory of re-
covery from tp1 to tp3 (Figure 5D). Despite these coordinated
changes, patients did not return to an immune composition com-
parable to healthy donors, indicating that the time of extubation
remains an active immunological phase of disease resolution
from the most severe form of COVID-19. Some key immune
cell populations that remain different from healthy controls
included both activated CD4 and CD8 T cells as well as Tregs
(Figures 5E and S5C). Of these changes, only the observed in-
crease in activated CD8 T cells was apparent within patients dur-
ing intubation (tp1 versus tp2; n = 11), suggesting that additional
dynamic changes are specific to the resolution of severe COVID-
19 (FDR < 0.1, Figures S5D and S5E).

COVID-19 ventilation recovery is associated with T cell
and monocyte phenotypic changes and a transition from
pSTAT to pCREB dominated signaling

Next, we further analyzed changes in immune cell activation and
cell signaling dynamics that accompany ventilation resolution.
Consistent with recovery trajectories in patients resolving
COVID-19, activated CD8 T cells expressed higher HLA-DR
and lower CCRY at the time of extubation (FDR < 0.1, Figure 5F),
while neutrophils expressed lower PD-L1 (FDR < 0.1, Figure S5F).
Additionally, while there was no difference in monocyte subset
frequencies (FDR > 0.1, Figure S5G), non-classical (CD16%)
monocytes exhibited a shift from a CD64* PD-L1+ phenotype
during ventilation to a CD4* CD11c+ HLA-DR+ activated mono-
cyte phenotype at the time of extubation (FDR < 0.1, Figures 5G,

(E and F) Median signaling molecule expression at tp1 (red) and tp2 (blue) for patients who are discharged <30 days, >30 days, and deceased. Error bars

represent standard errors.

(G) Monocyte frequencies (left plots) and CD8 activated pERK expressions (right plots) relative to time to discharge in all samples from patients who are dis-
charged <30 days (n = 142 samples) or >30 days (n = 30 samples). Black lines connect samples from the same patient. Blue lines and gray shadows represent the
best-fitted smooth line and 95% confidence interval. Dotted lines intersect the x-axis at day 30. See also Figure S4.
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5H, and 5l). CD64" expression on non-classical monocytes
incrementally decreased between tp1 and tp3 (Figure 5I).

Cell signaling states also changed markedly from the time of
intubation to the time of extubation. During early time points of
mechanical ventilation (tp1), higher expression of pSTAT1,
pSTATS, and pSTATS signaling was evident in CD4 Tregs, baso-
phils, and activated CD8 T cells (FDR < 0.1, Figures 5J, 5K, 5L,
and S5H). Conversely, pCREB signaling was significantly
increased after extubation (tp3) in CD4 Tregs and non-classical
monocytes (FDR < 0.1, Figures 5J, 5K, 5L, and S5H), suggesting
there is a transition from inflammatory cytokine signaling
response to pro-survival signaling within these cells, specifically.
Visualizing these signaling trajectories in PCA space revealed a
coordinated trajectory of immune cell signaling that accom-
panies extubation across patients (Figure 5M), though signaling
states remained distinct from those in healthy individuals (Fig-
ure S5I). Taken together, our analyses identify a conserved set
of immunological processes that are consistent among patients
who recovered from mechanical ventilation as a result of COVID-
19, elucidating an additional layer of immunological changes,
e.g., increases in CD4 Tregs, basophils, and pCREB signaling,
that are specific to these patients compared to recovery in pa-
tients who did not require mechanical ventilation.

Core immune resolution features define patients with
better clinical outcomes at time of admission

Having identified a signature of immune remodeling during
COVID-19 recovery, we next investigated if the early presence
of these features was associated with better patient outcomes.
We evaluated the immune composition of severe COVID-19 pa-
tients before or on the day they were ventilated (vent, n = 13) and
compared it to the immunological state at time of admission (day
0) for patients who never required ventilation (no vent, n = 50)
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(Figures 6A and S6A). Differential abundance analysis of immune
cell frequencies revealed higher frequencies of monocytes and
CD4 Tregs, as well as decreased neutrophil frequencies, in pa-
tients who never required ventilation (FDR < 0.1, Figures 6B
and 6C). Similar results were obtained when exclusively
analyzing samples collected prior to ventilation (vent, n = 8)
(FDR < 0.1, Figures S6B and S6C). Patients who never required
ventilation exhibited an immune state more like those of the
healthy controls (Figure S6D). While monocytes were signifi-
cantly downregulated at time of admission in patients who
required ventilation, we observed a consistent increase from
time of intubation to time of discharge with the highest incline
occurring right after time of extubation (Figure 6D). The opposite
directionality was observed for neutrophils (Figure 6D). CD4
Tregs, which are known to play a role in ARDS resolution and pul-
monary recovery, demonstrate a gradual increase in frequency
during patient intubation followed by the steepest increase after
extubation (Garibaldi et al., 2013; Mock et al., 2014) (Figure SEE).
Additionally, the phenotype of monocytes in patients who never
require ventilation resembles the activated monocyte subset
identified during discharge and ventilation recovery, expressing
significantly higher CD4 and CD11c (FDR < 0.1, Figures S6F and
S6G). Furthermore, basophil and CD4 Treg signaling states that
were identified during ventilation resolution were already signifi-
cantly higher in patients who required ventilation at time of
admission (p < 0.05, Figures 6E and S6H) and consistently
decreased during ventilation (Figure 6F).

In conclusion, we identified a set of conserved core immune
features that accompany disease resolution, including changes
in myeloid and T cell abundances as well as reduction in pan-im-
mune cell activation, with additional features that identify pa-
tients who recover from ventilation, e.g., an increase of CD4
Tregs and basophils (Figure 6G). These ventilation-specific

Figure 5. Recovery from severe COVID-19 requires core immune resolution features and additional regulatory T cell and basophil
upregulation

(A) lllustration of intra-patient analysis of ventilated patients. Three timepoints are considered: tp1 (first sample after a patient has been put on a ventilator), tp2
(last sample before the patient is removed from a ventilator), and tp3 (first sample after a patient is successfully removed from ventilation support).

(B) Paired differential abundance analysis of immune cell populations between the first (tp1) and third (tp3) timepoints illustrated in 5A (paired Wilcoxon Rank Sum
Test). The log2 fold changes (tp3 versus tp1) are plotted against the negative log10 (nominal p values). Colors indicate whether cell populations are significantly
down- (blue) or upregulated (purple) from tp1 to tp3 or not differentially expressed (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

(C) Frequency of monocytes, neutrophils, CD4 Treg, and CD8 activated T cells at tp1 and tp3. Lines connect samples from the same patient. Nominal p values
obtained by paired Wilcoxon Rank Sum Test. CD8 activated T cells are shown as a percentage of parent population (e.g., CD8 T cells), while monocytes,
neutrophils, and CD4 Tregs are shown as a percentage of all cells.

(D) Principal component analysis of significant immune cell subsets in 5B for tp1, tp3, and healthy controls. Immune cell directionality and contribution to PCA
space denoted on the right.

(E) Population frequencies of significant immune cell subsets in 3B for tp1, tp3, and healthy controls. Stars indicate median value for each group. Cell populations
are highlighted in green if tp3 is closer to healthy than tp1 and highlighted in yellow if tp3 is moving away from healthy.

(F and G) Protein expression on CD8 activated T cells (F) and on monocyte subsets (G) at tp1 and tp3. Mean protein expression values have been log10
transformed, scaled, and centered on heatmap. Bars indicate mean protein expression across all samples. Only significant proteins are shown (Wilcoxon Rank
Sum Test, Benjamini-Hochberg correction with FDR < 0.1).

(H) Expression of PD-L1 on non-classical monocytes at tp1 and tp3. Lines connect samples from the same patient. Nominal p values obtained by paired Wilcoxon
Rank Sum Test.

(l) Left: Scatter plots of CD11c and HLA-DR expression on non-classical monocytes in patient 1276 at day O (tp1, top) and day 28 (tp3, bottom). Right: Expression
of CD64 on non-classical monocytes for patient 1279 from day 0 (tp1) to day 28 (tp3).

(J) Expression of signaling molecules in significantimmune cell subsets in 5B at tp1 and tp3. Median signaling expression values have been centered on heatmap.
Only significant signaling molecules are shown (Wilcoxon Rank Sum Test, Benjamini-Hochberg correction with FDR < 0.1 within each cell type).

(K) Expression of pSTAT1 (left) and pCREB (right) in CD4 Tregs at tp1 (blue) and tp3 (orange) for representative patients.

(L) Expression of pSTAT1 and pCREB in CD4 Tregs at tp1 and tp3. Lines connect samples from the same patient. Nominal p values obtained by paired Wilcoxon
Rank Sum Test.

(M) Principal component analysis of significant signaling molecules in 5l for tp1, tp3, and healthy controls. Immune cell directionality and contribution to PCA
space denoted on the right. See also Figure S5.
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(legend continued on next page)
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features are significantly different at time of admission between
patients who will require mechanical ventilation and those that
never require ventilation, and thus associate with poorer clinical
outcomes (Figure S6l).

DISCUSSION

Human immunology studies are inherently challenging because
of the variability across individuals. The urgency to understand
and respond to COVID-19 provided an opportunity to recruit,
study, and analyze a large number of individuals responding to
the same infection over a finite period of time (April 2020-April
2021). Since individuals recover from infection across a variable
amount of time, these studies highlight the benefit of longitudinal
analysis anchored on key clinical events in the disease process.
This analytical approach revealed the unifying trends among pa-
tients that define clinically relevant events, such as discharge
from the hospital or extubation after mechanical ventilation,
regardless of initial disease severity or time to recovery.

Our findings are consistent with several recent reports of im-
mune responses to COVID-19 while contributing an understand-
ing of the processes that accompany disease recovery,
including changes in immune cell signaling states. Although
some studies have suggested that early intervention to modulate
immune hyperactivation may be beneficial in severe COVID-19
(Lucas et al., 2020), our data indicate that early immune cell
signaling is associated with shorter hospitalization and ventila-
tion duration. This indicates that an early robust immune
response, driven by pSTAT signaling, and subsequent contrac-
tion during recovery may be beneficial to resolving COVID-19.
Baseline differences in this signaling state across patients at
the time of hospital admission and the dynamic regulation of
signaling over time within individual patients during recovery
may, at least in part, explain conflicting reports from studies tar-
geting immune cell signaling pathways with IL-6 inhibitors or ste-
roids. In patients who require mechanical ventilation, additional
immunological changes, including increased Tregs and baso-
phils and reduced cell signaling in basophils, also accompany
recovery in addition to the core recovery trajectory observed in
patients who did not require ventilation. In our analysis, the
STAT1 pathway downstream of type | IFN signaling was not
differentially activated between patients with different disease
severities. Instead, our study identified that many signaling path-
ways are activated simultaneously at the time of hospitalization,
consistent with a recent report of concordant production of cyto-
kines associated with type 1, 2, and 3 immune responses in pa-
tients with severe COVID-19 (Lucas et al., 2020). Despite the
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importance of B cells to generate SARS-CoV-2-neutralizing an-
tibodies (Lucas et al., 2021), we did not identify changes in circu-
lating B cells associated with the recovery trajectory. This aligns
with the clinical observation that B cell-deficient patients or pa-
tients with agammaglobulinemia can recover from COVID-19
(Soresina et al., 2020; Bange et al., 2021) and suggests that B
cells may play a role in contributing to immunological memory
as compared to the resolution of severe COVID-19. Our work
identified regulatory T cells as significantly changing only in pa-
tients who require ventilation, starting at significantly lower fre-
quencies than in patients who never require ventilation support
but steeply increasing after extubation. These findings are
consistent with their critical role in pulmonary repair and ARDS
recovery (Garibaldi et al., 2013; Mock et al., 2014).

Overall, our study identifies core immunological changes that
accompany disease recovery from severe COVID-19 and pro-
vides a foundational model of a successful anti-SARS-CoV-2 im-
mune response to contextualize divergent immune processes
during poor disease outcomes in immunosuppressed or immu-
nocompromised patients, long-haul COVID-19 patients, pediat-
ric patients with MIS-C, or response to new variants. By eluci-
dating a conserved trajectory of successful recovery, this
study also nominates key immunological processes that could
be targeted to enable recovery of severe disease in COVID-19
patients and perhaps other acute respiratory infections.

Limitations of the study

Variability across patients limited the number of significant con-
clusions drawn from cross-sectional analyses. In addition,
healthy controls were on average younger than the hospitalized
patients, though ranges overlapped. Samples were only
collected during the hospitalization period, precluding analysis
of later convalescent time points. Additionally, the majority of
our patients recovered successfully. The limited sample size
and variable immune states of patients with long-term hospital
stays and deceased patients made it challenging to fully under-
stand the defining immune characteristics of patients with the
worst outcomes.

CONSORTIA

The members of the UCSF Comet Consortium are Ravi Patel,
Yumiko Abe-Jones, Saurabh Asthana, Alexander Beagle, Shar-
vari Bhide, Cathy Cai, Maria Calvo, Sidney A. Carrillo, Suzanna
Chak, Zachary Collins, Spyros Darmanis, Gabriela K. Fragiada-
kis, Rajani Ghale, Jeremy Giberson, Pat Glenn, Ana Gonzalez,
Kamir Hiam-Galvez, Alejandra Jauregui, Serena Ke, Tasha Lea,

(B) Differential abundance analysis of immune cell populations between ventilated and non-ventilated patients illustrated in 6A (Wilcoxon Rank Sum Test). The
log2 fold changes (vent versus no vent) are plotted against the negative log10 (nominal p values). Colors indicate if cell populations are significantly down- (blue) or
upregulated (purple) for vent versus no vent or not differentially expressed (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

(C) Frequency of monocytes, neutrophils, CD4 Tregs, and CD8 EM3 T cells in vent and no vent patients. Nominal p values obtained by Wilcoxon Rank Sum Test.
CD8 EM3 T cells parent population (e.g., CD8 T cells), while monocytes, neutrophils, and CD4 Tregs are shown as a percentage of all cells.

(D) Monocyte (left plots) and neutrophil (right plots) frequencies relative to intubation/extubation in all samples from ventilated patients. Black lines connect
samples from the same patient. Blue lines and gray shadows represent the best-fitted smooth line and 95% confidence interval. Dotted lines intersect the x axis at

day of intubation or extubation.

(E) Expression of pSTAT3 and pPLCg2 in basophils in non-ventilated and ventilated patients as well as healthy individuals. Nominal p values obtained by Wilcoxon

Rank Sum Test.

(F) Expression of pSTAT5 in CD4 Tregs relative to intubation or extubation in all samples from ventilated patients.
G) Graphical summary depicting the trajectories of key immune features involved in COVID-19 resolution and ventilation recovery. See also Figure S6.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Mass cytometry antibodies are
found in Table S5

This paper

N/A

Biological samples

Blood sample

UCSF hospital under the IMPACC study

N/A

Chemicals, peptides, and recombinant proteins

Benzonase Sigma-Aldrich Cat# E8263-25KU; RRID: N/A
Calibration beads EQTM Four Element Fluidigm Cat#201078; RRID: N/A
TrueStain FcX (anti-mouse CD16/32 BioLegend Cat#101320

antibody (clone 93)

Cell Acquisition Solution Fluidigm Cat#201240

Critical commercial assays

MaxPar Antibody Conjugation Kit Fluidigm Cat#201300

Deposited data

Mass cytometry data This paper Mendeley data:

https://doi.org/10.17632/pmjrc8kw9x.2

Software and algorithms

Cytobank analysis software

Cellengine analysis software

Normalizer/Debarcoding

R environment

Cytobank, Inc

Primitybio

Parker Institute for Cancer Immunotherapy

R Development Core Team

https://cytobank.org

RRID: SCR_014043
https://primitybio.com/cellengine.html
RRID: N/A
https://github.com/Parker|Cl/premessa
RRID: N/A

https://www.r-project.org/
RRID:SCR_001905

Other

Helios mass cytometer

Fluidigm

N/A

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Matthew

Spitzer (matthew.spitzer@ucsf.edu).

Materials availability

This study did not generate new unique materials. Information regarding antibody conjugates is presented in Table S5.

Data and code availability

® Mass cytometry data are publicly available from Mendeley Data at https://doi.org/10.17632/pmjrc8kw9x.2.
® No new code or algorithms were developed during this study. All code used will be provided upon request without limitations.
@ Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

SUBJECT DETAILS

Human subjects

Patients, or a designated surrogate, provided informed consent to participate in the study. The study is approved by the UCSF Insti-
tutional Review Board: IRB 20-30497.Clinical study was designed and implemented according to the IMPACC study ((Null et al.,
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2021)). Patients were recruited from UCSF hospital system and Zuckerberg San Francisco General Hospital and they, or a designated
surrogate, provided informed consent to participate in the study. Patients with presumed COVID-19 were enrolled within three days
of hospital admission and peripheral blood samples were collected under a protocol approved by the UCSF Institutional Review
Board (IRB 20-30497). Patients with confirmed positive SARS-CoV-2 polymerase chain reaction (PCR) were designated as
COVID-19 positive cohort (n = 81) and patients without confirmed SARS-CoV-2 PCR were designated COVID-19 negative (n = 7).
Healthy donors (n = 11) were recruited (IRB 19-27147) for a single peripheral blood time point and consisted of unexposed patients
in a similar age range as the hospitalized cohort. Clinical data and peripheral blood samples were collected at time of enrolilment and
throughout hospitalization (mainly on days 4, 7, 14, 21, and 28). If escalation of care was required, samples were collected within 24
and 96 h of care escalation. All COVID-19 patients in this study were admitted into the UCSF hospital system and remained there for
the duration of our study. By definition, all in-patients reflect a World Health Organization (WHO) COVID-19 severity score of 3
or greater. Patient severity was determined by the clinical team to reflect the WHO COVID-19 severity scoring at each clinical
time point throughout in-patient treatment. Based on WHO stratifications (World Health Organization, 2021b) and consulting with
the treating physician teams, our study combined WHO score 5, 6, and 7 into the most severe clinical group. WHO scores of 3
and 4 correspond to Mild and Moderate groups, respectively. Participant age, gender, and additional demographic details are pro-
vided in Table S2.

METHOD DETAILS

Peripheral blood sample collection and processing

Blood samples were collected in one EDTA tube and processed within 6 h of collection. Whole blood was divided in 540 L aliquots
then fixed by addition of 756 uL of SmartTube Stabilizer from SmartTube Inc (Fisher Sci. Cat# 501351692). After gentle mixing at
room temperature for 10 min, the samples were transferred to labeled cryovials and immediately carried to —80°C for long term
storage.

Sample thawing and filtering

Samples were subsequently thawed after being placed 10 min into a 4°C refrigerator then incubated for 15 min in aroom temperature
water bath. After filtering with 70um Cell Strainer (Celltreat, Cat# 229483) and washing in 45 mL Milli-Q H20, samples were counted
and barcoded.

Antibodies and staining procedure

The source for all mass cytometry antibodies can be found in Table S5. Antibodies were conjugated to their associated metals with
MaxPar X8 labeling reagent kits (Fluidigm) according to manufacturer instructions, diluted with Candor PBS Antibody Stabilization
solution (Candor Bioscience, CAT#130 050) supplemented with 0.02% sodium azide, and filtered through an UltrafreeMC 0.1-mm
centrifugation filter (Millipore) before storage at 4°C. To reduce tube-to-tube pipetting variations, part of the signaling antibody panel
came from lyophilized antibody cocktail, made at Stanford University as previously described ((Han et al., 2018)). Surface and intra-
cellular master antibody cocktails were made and kept at —80°C in order to stain up to 600 samples.

Mass-tag cellular barcoding

Prior to antibody staining, mass tag cellular barcoding of prepared samples was performed by incubating cells with distinct combi-
nations of isotopically-purified palladium ions chelated by isothiocyanobenzyl-EDTA as previously described ((Zunder et al., 2015)).
After counting, 1*1 08 cells from aliquot were barcoded with distinct combinations of stable Pd isotopes for 15 min at room temper-
ature on a shaker in Maxpar Barcode Perm Buffer (Fluidigm, cat#201057). Cells were washed twice with cell staining media (PBS with
0.5% BSA and 0.02% NaN3), and pooled into a single 15 mL tube.

Mass cytometry staining

Barcoded cells were stained with Fc Receptor Blocking Solution (BioLegend, Cat#422302) at 20 mg/mL for 5 min at RT on a shaker.
Surface antibody cocktail is then added with a 500 ul final reaction volume for 30 min at RT on a shaker. Following staining, cells were
washed twice with cell staining media. Before intracellular staining, cells were permeabilized for 10 min with methanol at 4°C. Meth-
anol is then removed by washing the cells 2 times with cells staining media. Intracellular cocktail is then added to the cells in 500 uL
final reaction volume for 1 h at RT on a shaker. Cells were washed twice in cell staining media to remove antibodies excess and then
stained with 1mL of 1:4000 191/193Ir Iridium intercalator solution (Fluidigm,Cat#201192B) diluted in PBS with 4% PFA overnight.
Before mass cytometry run, cells were washed once with cell staining media, and twice with Cell Acquisition Solution (Fluidigm,
Cat# 201240).

Mass cytometry

Mass cytometry samples were diluted in Cell Acquisition Solution containing bead standards (Fluidigm, Cat#201078) to approxi-
mately 10° cells/mL and then analyzed on a Helios mass cytometer (Fluidigm) equilibrated with Cell Acquisition Solution. Approxi-
mately 0.5x106 cell events were collected for each sample at an even rate of 400-500 events/second.
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Data normalization and de-barcoding
Bead standard data normalization and de-barcoding of the pooled samples into their respective conditions was performed using the
R package from the PICI institute available at https://github.com/ParkerICl/premessa.

Quality control inclusion and exclusion criteria

In order to ensure high quality sample collection, processing, and staining across the cohort we developed a set of inclusion criteria
required for each sample to be used in our data analysis. We processed and ran CyTOF on 498 peripheral blood samples. After de-
barcoding and normalization, samples were uploaded to Cell Engine to assess adequate staining and cell number. Each barcode
plate was run with a healthy PB control sample aliquoted from two healthy donors to validate staining and for normalization between
barcode plates. If the control PB sample failed to stain the major immune cell populations (T cell, B cell, granulocytes, monocytes), no
samples from that barcode plate were included. Individual samples were then assessed for CD45" composition (>50% CD45™ stain-
ing required), cell abundance (>5,000 cells per sample required), and representation of the major immune cell populations (T cell, B
cell, granulocytes, monocytes). 230 samples passed QC and were used in the batch normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Batch normalization

All manually gated immune cells (CD45%) from samples meeting our inclusion criteria (n = 230) were downloaded as FCS files from
cellEngine. Premessa (Gherardini, 2021) (https://github.com/ParkerICl/premessa) and cytofCore (Bruggner et al., 2021) (https://
github.com/nolanlab/cytofCore) were used to harmonize panels between runs, and CytoNorm (Van Gassen, 2021) (https://github.
com/saeyslab/CytoNorm) were utilized to correct for batch effect. All markers were used for batch effect normalization, except
for Ki-67, which failed for several CyTOF runs and were excluded in the final data. Samples were separately normalized to control
1 and 2, and subsequently combined into one final data set of normalized FCS files.

Manual gating

Batch effect normalized FCS files were uploaded to Cell Engine for manual gating. Major immune cell populations were identified
based on prior gating strategy (Allen et al., 2020). T cell subsets were further identified based on phenotypic markers specified in prior
publication that suggested these specific subtypes could play a role in COVID-19 severity (Mathew et al., 2020).

t-SNE visualization

The multiparameter dimensionality reduction method t-distributed stochastic neighbor embedding (t-SNE) was employed to visu-
alize major shifts in immune distribution between COVID-19 positive, COVID-19 negative, and healthy individuals. CD45* immune
cells from healthy peripheral blood samples were compared to day 0 (DO0) peripheral blood samples from COVID-9 positive and nega-
tive individuals and respective groups were concatenated into a single FSC file which was then used in the t-SNE algorithm on Cell
Engine (cellengine.com). Only phenotypic markers were used as analysis channels and no phospho-signaling channels were input
into the t-SNE visualization. The default settings for t-SNE plot were utilized and a default of 90 nearest neighbors (k) was used. Manu-
ally gated immune cell populations were used to color the t-SNE plot to identify representative immune populations on the plot.

Defining groups and samples

For intra-patient resolution analyses, we defined three different groups; patients who were discharged within 30 days of enroliment in
the study (<30 days), patients who were discharged after 30 days of enroliment in the study (>30 days), and patients who died. For
patients who were discharged <30 days, the last sample (tp2) had to be obtained within 7 days of discharge. For patients who were
discharged >30 days and patients who died, the last sample (tp2) had to be obtained within 50 days of discharge. For all groups, the
first sample (tp1) had to be obtained within 14 days of enroliment. For intra-patient ventilation recovery analysis, samples had to be
obtained within 7 days of the point of interest, e.g. going on a ventilator or coming off a ventilator. For all comparisons; if multiple
samples fulfilled the requirements, we used the sample closest to the event of interest. The number of patients and specific sampling
timepoints used for each analysis are illustrated in the supplementary figures.

Statistical analysis

All statistical tests were performed in R (Team and Others, 2013; RStudio Team, 2016). The non-parametric Wilcoxon rank sum test
was utilized to compare immune population frequencies, median protein expression values, and median signaling molecule values
between groups of interest. For intra-patient analysis, we used the paired Wilcoxon rank sum test. For multiple testing corrections, we
applied Benjamini-Hochberg correction and statistical differences were declared significant at FDR <0.1. Most of the plots were pro-
duced with the R package ggplot2 (Wickham, 2016).
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