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Distinct pulmonary and systemic effects of
dexamethasone in severe COVID-19

Lucile P. A. Neyton 1,33, Ravi K. Patel 2,33, Aartik Sarma 1,33, UCSF COMET
Consortium*, Andrew Willmore1, Sidney C. Haller1, Kirsten N. Kangelaris3,
Walter L. Eckalbar1,2, David J. Erle 1,2,4,5, Matthew F. Krummel 6,
Carolyn M. Hendrickson 1, Prescott G. Woodruff1, Charles R. Langelier 7,8,
Carolyn S. Calfee1,4,9 & Gabriela K. Fragiadakis 2,10

Dexamethasone is the standard of care for critically ill patients with COVID-19,
but the mechanisms by which it decreases mortality and its immunological
effects in this setting are not understood. Herewe performbulk and single-cell
RNA sequencing of samples from the lower respiratory tract and blood, and
assess plasma cytokine profiling to study the effects of dexamethasone on
both systemic and pulmonary immune cell compartments. In blood samples,
dexamethasone is associated with decreased expression of genes associated
with T cell activation, including TNFSFR4 and IL21R. We also identify decreased
expression of several immune pathways, including major histocompatibility
complex-II signaling, selectin P ligand signaling, and T cell recruitment by
intercellular adhesion molecule and integrin activation, suggesting these are
potential mechanisms of the therapeutic benefit of steroids in COVID-19. We
identify additional compartment- and cell- specific differences in the effect of
dexamethasone that are reproducible in publicly available datasets, including
steroid-resistant interferon pathway expression in the respiratory tract, which
may be additional therapeutic targets. In summary, we demonstrate
compartment-specific effects of dexamethasone in critically ill COVID-19
patients, providing mechanistic insights with potential therapeutic relevance.
Our results highlight the importance of studying compartmentalized inflam-
mation in critically ill patients.

Moderate doses of corticosteroids, including dexamethasone,
decrease mortality in patients with severe COVID-19 in clinical trials1.
Conversely, steroids may increase mortality in COVID-19 patients
without hypoxemia2, and higher doses of dexamethasone may

increase mortality in hypoxemic, non-ventilated patients3. While ran-
domized controlled trials of steroids in patients with COVID-19 have
transformed clinical practice, the cell- and compartment-specific
effects of corticosteroids in these patients are not well understood.
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Dexamethasone is classically considered a non-specific and potent
systemic anti-inflammatory medication, but it has pleiotropic effects
on inflammatory signaling, wound healing, and metabolism in
experimental models4. In experimental studies in animal models and
human volunteers, dexamethasone and other corticosteroids have
distinct effects on systemic versus pulmonary inflammation5, and
several studies have identified cell-specific effects of glucocorticoids6.
While a small number of studies have described the effects of corti-
costeroids on blood and lung gene expression in COVID-197,8, no work
has yet comprehensively evaluated effects across gene, protein, and
cellular levels in both systemic circulation and respiratory tract. Fur-
ther understanding the cell- and compartment-specific effects of
dexamethasone in severe COVID-19 may elucidate the therapeutic
effects of steroids in these patients and further our understanding of
the role of steroids in other viral infections and/or the acute respira-
tory distress syndrome (ARDS) more generally.

Here, weuse single-cell RNA sequencing to studyperipheral blood
and tracheal aspirate (TA) from amulti-center observational cohort of
patients with COVID-19 before and after dexamethasone became
standard of care, using data generated as part of the COMET and
IMPACC studies9,10. We integrate this data with cytokine and gene
expression data from blood and compare it to two publicly available
datasets. We identify several cell-specific differences in the pulmonary
and systemic effects of dexamethasone in mechanically ventilated
patients with COVID-19 ARDS, many of which were reproducible in the
external datasets. Through receptor-ligand analysis, we also detect
signatures of injury resolution and reduced antigen presentation andT
cell recruitment in dexamethasone-treatedpatients, returning to levels
observed in healthy controls. This work highlights the importance of
studying both local and systemic inflammatory signaling in acute
respiratory disease and identifying biological pathways that may
represent future therapeutic targets.

Results
We conducted a prospective case-control study of mechanically ven-
tilated adults (age ≥ 18) with COVID-19 acute respiratory distress syn-
drome (ARDS) at two academic hospitals: the University of California,
San Francisco Medical Center (UCSFMC), and the Zuckerberg San
Francisco General Hospital (ZSFG). Patients were enrolled into an
observational cohort starting in April 2020. At both sites, patients did
not routinely receive corticosteroids for COVID-19 ARDS prior to the
publication of the RECOVERY trial in July 2020, at which time dex-
amethasone was promptly introduced as a treatment for patients
hospitalized with severe COVID-19. We studied patients enrolled
before and after this rapid change in the standard of care, which
enabled amulti-omic characterization of the effects of dexamethasone
in patients with COVID-19 ARDS.

For this study, we included patients admitted to the ICU with at
least one biospecimen (TA, blood, or plasma) collected (Fig. 1a) while
theyweremechanically ventilated.We excluded patients who received
steroids for an indication other thanCOVID-19 and those who received
other immunosuppressive drugs (e.g., tocilizumab, baricitinib), leav-
ing a final sample size of 27 patients who received at least one dose of
6mg dexamethasone at the time of initial biosampling (Dex) and 16
patients who did not receive dexamethasone (NoDex) prior to speci-
men collection (Fig. S1, Table S1). An overview of patients included in
the different analyses is provided (Fig. 1b). All included patients were
recruited between April 2020 and March 2021.

Dexamethasone modulates cytokine and immune cell gene
expression inblood samples frompatientswith severeCOVID-19
We first profiled a panel of 18 plasma cytokines (Table S2) previously
associated with COVID-19 and ARDS pathophysiology11 in Dex (N = 15)
and NoDex (N = 23) subjects at the time of study enrollment. After
adjusting for multiple hypothesis testing, we observed significantly

lower plasma IL-6 and IFN-gamma in Dex patients compared to NoDex
patients (Fig. 1c). Conversely, we observed significantly higher levels of
IL-10, a cytokine that suppresses inflammatory responses12, in Dex
patients treated with dexamethasone (Fig. 1c). Other cytokines did not
present significantly different levels across treatment groups
(Fig. S2A). Examination of times between first dexamethasone dose
and sample collection demonstrated that these changes in cytokine
levels persisted for at least 24 h after starting steroid treatment
(Fig. S2B).

We then comparedperipheral bloodgene expression between the
Dex (N = 10) and NoDex (N = 11) groups and found 4,050 differentially
expressed genes (20% of protein coding genes tested) after adjusting
for age and sex assigned at birth (adjusted p < 0.1) (Fig. 1d). Immune
genes such as TNFRSF4, involved in T cell co-stimulation, and IL21R,
involved in T-/B- and NK-cell activation, as well as several genes
involved in allergic responses (MS4A2, PTGDR2) were downregulated
in Dex patients. Genes upregulated in the Dex patients included
ADAMTS2, a procollagen N-endopeptidase upregulated by TGF-beta
that has been reported to be upregulated by glucocorticoids13, and
RLN3, involved in the response to DNA damage and repair14. Gene set
enrichment analysis (GSEA) of results of the differential gene expres-
sion analysis identified 21 significantly dysregulated pathways in the
Reactome database (adjusted p <0.1) (Fig. S3). The most enriched
pathways in Dex patients included metabolic pathways such as tri-
carboxylic acid cycle and several mitochondria-associated pathways,
defense against pathogens, and interferon signaling. Conversely,
NoDex patients had gene expression signatures consistent with the
enrichment of sensory perception pathways possibly linked to differ-
ences in leukocyte populations15, and the activation of cell survival
related pathways suchasfibroblast growth factor receptor (FGFR)- and
G-protein-coupled receptor (GPCR).

Supervised integrative analysis of blood transcriptomic and
plasma cytokine data identifies co-varying responses to
dexamethasone
We next designed an integrative analysis examining the effect of dex-
amethasone on gene expression and protein concentrations in all
patients with both data types available from the same blood sample
(N = 10 Dex patients and N= 11 NoDex). We used DIABLO16, an imple-
mentation of partial least squares discriminant analysis, to identify
components (“variates”) shared across modalities that stratify based on
dexamethasone treatment with the goal of identifying coordinated
changes across gene expression and protein concentrations vs. changes
independently observed in unique data types. Variate 1 clearly separated
Dex fromNoDexpatients (Fig. 2a).When examining the contributions to
variate 1 from the cytokine data, Dex patients were separated based on
lower IP-10,which is involved in interferongammasignaling; lower levels
of the inflammatory cytokines IL-6 and IL-18; lower ICAM-1, which is
involved in inflammation and leukocyte recruitment; and lower Ang-2, a
facilitator of angiogenesis and antagonist to Ang-1. Dex patients were
conversely separated by higher Ang-1, and higher levels of protein C and
IL-10, reflecting the attenuated proinflammatory cytokine signaling
observed in the unimodal analysis (Fig. 2b).

Gene set enrichment analysis of the transcriptomic contributions
to variate 1 unexpectedly demonstrated relative elevation of innate
immune response and cytokine signaling pathways in Dex patients
compared to the NoDex patients (Fig. 2c). Covariation highlighted by
DIABLO exposed a decrease in the inflammatory response in circulat-
ing cytokines, and an increase in inflammatory responses in peripheral
blood gene expression. Pathways involved in defense against patho-
gens, as well as interferon signaling, were found to be enriched in Dex
patients, consistent with the analysis of peripheral blood gene
expression. Additionally, gene expression variation represented by
variate 1 was associated with alterations in transcriptional regulation
and specifically, to epigenetic-related processes.
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Single-cell analysis reveals differing effects of dexamethasone
on immune cells from the lung versus blood that are repro-
ducible in external datasets
In order to compare systemic and tissue-specific effects of dex-
amethasone treatment, we examined single-cell RNA sequencing data
from both whole blood and TA from patients treated with or without
dexamethasone.We evaluatedwhole blood (WB) scRNA-seq data from
7 Dex and 3 NoDex, and TA scRNA-seq data from 10 Dex and 7 NoDex
patients (Fig. 3a, b). A single data processing pipelinewasused to align,
harmonize, and cluster data and identify cell types from both com-
partments (Fig. 3c, d), as well as examine the cell-specific effect of
dexamethasone (Fig. 3e, f). Notably, while we include in our gene
expression and pathway analysis the cells that are identified as neu-
trophils, we excluded them from our comparisons of cell type abun-
dance because their proportions were highly discordant with
complete blood count results of absolute neutrophil count per white
blood cell count (Table S1), likely due to experimental variability in the
neutrophil-sparing protocol for scRNA-seq in blood.

Cell-type specific gene expression differences assessed using
MAST17 identified both shared and compartment-specific differential

gene expression associated with dexamethasone (Fig. 3g, h, Fig. S4,
Table S3; Supplementary Data File 1). The greatest concordance across
compartments appeared in neutrophil differential gene expression
(Spearman’s correlation R =0.5; Fig. 3g). Dex subjects exhibited
decreases in expression of the S100A family of proinflammatory genes
in neutrophils in both lungs and blood. In contrast, gene expression in
T cell subsets was highly discordant across compartments (Tregs
R =0.03; CD4 T cells R =0.05, CD8 T cells R = −0.01; Spearman’s cor-
relation). The greatest shared significant difference across anatomical
sites in CD4 and CD8 T cells was in the expression of FKBP5 (log2 fold-
difference0.49 and0.39, and adj. p-value 0.023 and0.058 for CD4 and
CD8 T cells, respectively), which is a canonical transcriptomic marker
of glucocorticoid receptor activity18.

In order to assess consistency and reproducibility of our analysis,
we also analyzed two external single-cell RNA-seq datasets using this
same pipeline: Sinha et al. similarly generated scRNA-seq on whole
blood to examine the role of neutrophils in COVID-19 and respon-
siveness to dexamethasone in an observational cohort of 13 patients (5
Dex/ 8 NoDex)7; and Liao et al. acquired bronchoalveolar lavage (BAL)
samples from 6 COVID-19 patients19, a subset of whom were treated
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Fig. 1 | Dexamethasone modulates cytokine and immune cell gene expression
in the blood of patients with COVID-19. a The introduction of dexamethasone
(Dex) as standard of care for critically ill patients hospitalized with COVID-19
based on the results of the RECOVERY trial. Blood and tracheal aspirate (TA)
sampleswere collected from intubated patients enrolled either before or after this
change. Figure 1a Created with BioRender.com released under a Creative Com-
mons Attribution-NonCommercial-NoDerivs 4.0 International license (https://
creativecommons.org/licenses/by-nc-nd/4.0/deed.en). b Included patients and
time points per analysis. A single sample was used per patient. Each patient was
either treated with Dex (orange) or not (blue). Samples used in DIABLO analysis

(Fig. 2) are the overlap in PBMC bulk RNA sequencing and plasma cytokine rows.
c Individual plots of log-transformed significant cytokines IL-6, IL-10, and inter-
feron gamma (IFN-gamma) (two-sided Wilcoxon rank-sum test, BH-adjusted
p < 0.1). The median, first and third quartiles, and 1.5*interquartile range distance
from the quartiles are represented using the center mark, hinges, and whiskers,
respectively. N = 23 Dex, N = 15 NoDex. d Volcano plot of differential gene
expression of PBMC RNA-seq data with DESeq2 (based on two-sided negative
binomial generalized linearmodels). Significance determined using a BH-adjusted
p < 0.1. N = 10 Dex, N = 11 NoDex.
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with the corticosteroid methylprednisolone (4 methylprednisolone, 2
no-methylprednisolone). Immune cell composition was similar per
compartment in external datasets (Fig. S5).

To assess whether the effects of dexamethasone were repro-
ducible across datasets, we tested for enrichment of pathways in the
Reactome dataset that were detected across blood datasets (Fig. 4a,
Fig. S6) and lung

datasets (Fig. 4b, Fig. S6). In the blood datasets, we observed
decreased innate immune signaling and degranulation in neutrophils
and decreased immunoregulatory interactions between the lymphoid
and non-lymphoid cells in monocytes in Dex patients. Both blood
datasets revealed decreased adaptive immune responses and co-
stimulation in B cells, as well as decreased levels in cellular respon-
siveness, and pathways related to infectious disease and influenza
responses in both CD4 and CD8 T cells in Dex patients. Interestingly,
responses in B cells, CD4 T cells, and monocytes were directionally
consistent with a restoration to healthy control levels in these path-
ways (Fig. 4a, third column), as compared to observations in neu-
trophils and CD8 T cells.

In contrast, when examining our lung datasets, we observed
reproducible but often discordant effects with what was observed in
blood, most strikingly an elevation in interferon signaling and
response in influenza-relatedgenes inT cell subsets andNKcells inDex
patients that was not observed (interferon) or decreased (influenza) in
the blood single-cell datasets (Fig. 4b). Interferon signaling was, as
expected, lower in healthy controls than in COVID-19 patients (column
3). Discordant effects also includedpathways related to translationand

cellular responses to starvation in CD4 T cells, which appeared higher
in lung but lower in blood in Dex patients. Concordant effects across
compartments were not detectable.

Single-cell receptor ligand analysis suggests effects of dex-
amethasone on tissue injury resolution and a dampening of
antigen presentation and T cell responses
Because we identified several differences in cell-specific gene expres-
sion, we next sought to understand communication between cells
within a compartment to develop a model of the systems biology of
dexamethasone in patients with severe COVID-19. We examined
ligand-receptor communication using CellChat20, which extracts sig-
naling patterns among cells from single-cell RNA-seq data. We com-
pared cell-cell signaling between Dex and NoDex subjects in the
COMET study patients (blood and TA) and the Sinha et al. study, and
compared results against blood scRNA-seq data fromhealthy controls.
In TA, CellChat identified several pathways that were differentially
active in Dex and NoDex samples (Fig. 5a). Dexamethasone was asso-
ciated with amarked decrease inMHC-II signaling (Fig. 5b), suggesting
a potential decrease in antigen presentation to CD4 cells in the lung. In
addition, CellChat identified a significant decrease in SELPLG activity in
TA (Fig. 5c), suggesting dexamethasonemight play a role in decreasing
lung injury through these mechanisms, given prior studies associating
SELPLG with murine lung injury and higher risk for non-COVID-19
ARDS in humans. Similar effects were also observed in blood, but the
effect was much smaller in magnitude than in TA samples and statis-
tically insignificant.
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Fig. 2 | Supervised integrative analysis of blood transcriptomic and plasma
cytokine data captures co-varying effects of dexamethasone on immune cell
pathways andmodulators. a Integrative analysis of plasma cytokines (17 cytokine
variables) and bulk PBMCRNA-seq (500 gene variables) data (paired) frompatients
comparing Dex and NoDex using DIABLO and highlighting shared contributions
from individual data modalities. N = 10 Dex, N = 11 NoDex; day 0 of hospitalization.
First two variates from DIABLO run comparing Dex (orange) vs. NoDex (blue)
samples. A parameter value of 0.5 was chosen to model the strength of the

relationship between the data and the treatment status. b Cytokine contribution
(loadings) toDIABLOvariate 1. The color indicates the treatment group inwhich the
median value was the highest (orange for Dex and blue for NoDex). c GeneNet
enrichment scores (NES) from gene set enrichment analysis (one-sided test based
on a modified Kolmogorov–Smirnov statistic) of PBMC RNA-seq contribution to
DIABLO variate 1 (loadings) using REACTOME gene sets (methods). 20 most sig-
nificant terms (BH-adjusted p <0.1) represented: top 10 forDex (orange) and top 10
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Dexamethasone was associated with additional differences in
whole blood that were consistent with findings in the Sinha et al.
dataset. A clustered heatmap of detected interactions grouped
together the two NoDex COVID-19 datasets, whereas the two Dex
COVID-19 datasets grouped with each other and with the healthy
control dataset, suggesting dexamethasonemay be contributing to a
restoration toward a healthy phenotype (Fig. 5d). The collagen and
annexin pathways were more active in NoDex subjects, and activity
of these pathways in Dex subjects was comparable to healthy con-
trols (Fig. 5e, Fig. S7). Interestingly, collagen deposition can occur in
the context of viral infection, likely as a response to injury and
inflammation, and the restoration to healthy control levels may
further indicate reduction of that response. In addition, elevation of
CD99, ICAM, and ITGB2 were observed in NoDex patients compared
to both Dex patients and healthy controls (Fig. 5e, Fig. S7). This
finding may indicate an effect of dexamethasone on dampening T
cell responses since these signaling molecules are involved in leu-
kocyte recruitment, formation of the immunological synapse

between T cells and antigen presenting cells, and T cell function and
activation21.

Discussion
Despite their widespread use in clinical medicine and demonstrated
benefit in patients with severe COVID-19 infections, the biological
effects of corticosteroids on pulmonary and systemic biology in criti-
cally ill patients are incompletely characterized.Weperformed amulti-
omic analysis of the effects of dexamethasone in a cohort of patients
with severe COVID-19. We identified cell- and compartment-specific
effects of dexamethasone that highlight the pleiotropic effects of
steroids in critical illness. Limited data are available about the com-
partmentalized biological effects of steroids in patients with ARDS,
pneumonia, or sepsis due to causes other than COVID-19, and the role
of corticosteroids in treating these conditions in patients remains
uncertain22–24. Our analysis identifies dysregulated pathways poten-
tially modified by dexamethasone therapy that could have potential
therapeutic relevance in other causes of critical illness25.
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Fig. 3 | Single-cell analysis of lung and peripheral blood samples from patients
treated with or without dexamethasone. Plot per patient showing the collection
of whole blood (WB) (a N = 7 Dex, 3 NoDex) or tracheal aspirate (TA) samples
(bN = 10 Dex, 7 NoDex) overlaid on hospitalization (gray bars) and dexamethasone
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Integrative analysis of cytokine and blood transcriptomics iden-
tified decreased plasmaconcentrations of IP-10 inDex patients. IP-10 is
an interferon-stimulated molecule that promotes T-cell adhesion to
endothelial cells26, and has been associated with disease severity and
mortality inCOVID-19patients27. Consistentwith this result, interferon-
gamma concentrations were also lower in patients treated with dex-
amethasone. In contrast to IP-10 and IFN-gamma protein levels,
interferon-stimulated genes were markedly upregulated in
dexamethasone-treated patients in our integrative analysis. The dis-
cordance between interferon levels from protein biomarker data and
the enrichment of interferon-related genes may reflect steroid-
resistant ISG pathways remaining active in these patients, which may
explain the efficacy of JAK/STAT inhibition in patients treated with
steroids28. We also found higher levels of Ang-1, and lower con-
centrations of its antagonist, Ang-2, were associated with

dexamethasone treatment. An increased ratio of Ang-2 to Ang-1
reflects endothelial injury29, and is associatedwithmortality in patients
withARDSdue toCOVID-19 andother causes30. Together, the results of
our integrative analysis demonstrate treatmentwith dexamethasone is
associated with decreased activation of several pathways associated
with COVID-19 severity.

Inference and analysis of cell communication identified potential
cellular signaling networks that may explain changes in COVID-19
biology associated with dexamethasone treatment, including
decreased antigen presentation, leukocyte recruitment and activation,
and signatures of tissue injury. In TA, dexamethasone treatment was
associated with decreased activity of MHC-II and SELPLG, a glycopro-
tein involved in leukocyte trafficking in inflammation. Notably, SELPLG
was identified as a locus associated with increased risk of ARDS in
GWAS studies, pulmonary SELPLG expression is increased in murine
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Fig. 4 | Dexamethasone has discordant effects on cell type specific gene
expression in lung and peripheral blood that are reproducible in external
datasets. Net enrichment scores from gene set enrichment analysis in blood (a)
and lung (b), faceted by cell type. Orange circles have a positive net enrichment
score (NES), indicating the pathway is more highly expressed in dexamethasone-
treated COVID-19 patients (Dex) or healthy controls relative to NoDex subjects.

Solid circles identify pathways where GSEA BH-adjusted p <0.1, empty circles
identify pathways with GSEA BH-adjusted p ≥0.1, and blank spaces indicate no
GSEANES scorewas calculated for thatpathway. Significancewasdeterminedusing
a one-sided test based on a modified Kolmogorov–Smirnov statistic. Datasets
represented are from COMET (whole blood, TA), Sinha et al. (blood) and Liao et al.
(BAL). Ns reported in Fig. S8 and Supplementary Data File 2.
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lung injury models, and anti-SELPLG antibodies decrease LPS-induced
lung injury31. In both the respiratory tract and whole blood, dex-
amethasone was associated with decreased MHC-II activity. Dex-
amethasone inhibits expression of MHC-II in dendritic cells in
experimental models32, which may further suppress immune respon-
ses by decreasing antigen presentation to T cells. Decreased co-
stimulation as evidenced by reduced expression of TNFRSF4 (OX40,
Fig. 1d), gene sets (B cell co-stimulation pathway, Fig. 4), and receptor-
ligand co-expression (CD86 signaling, Fig. 5) further supports this

model of resultant decreased T cell activation via impaired antigen
presentation.

Network analysis of whole blood scRNA-seq data revealed
decreased activity of annexin, integrin beta 2, and ICAM pathways,
which mediate leukocyte adhesion and extravasation. These decrea-
ses were also observed in TA. Annexins play a key role in resolving
inflammation and are established glucocorticoid targets33. Beta2
integrins are adhesion molecules that regulate neutrophil function,
and leukocyte adhesion and trafficking. Our results are consistent
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Fig. 5 | Receptor ligand inference from single-cell sequencing data reveals
decrease in inflammation, antigen presentation, and T cell recruitment in
blood and lung in response to dexamethasone. a Clustered heatmap of CellChat
results of TA samples from Dex (N = 10) and NoDex (N = 7) patients with significant
receptor-ligand pairs shown (based on one-sided Wilcoxon signed rank test (BH-
adj. p <0.1 and |log2 fold-difference | > 1). Cell type interaction networks for MHC-II
(b) andSELPLG interactions (c) showncomparingNoDex (left,N = 7) andDex (right,
N = 10) patients of TA samples. Line thickness represents predicted strength of the
interaction. d Clustered heatmap of CellChat results of blood samples from Dex

(COMET), Dex (Sinha et al.), NoDex (COMET), NoDex (Sinha et al.), and healthy
controls (COMET) with receptor-ligand pairs that are significant between at least
one pair of patient groups are shown (based on one-sided Wilcoxon signed rank
test (BH-adj. p <0.1 and | log2 fold-difference | > 1). e Comparisons for the COMET
dataset shown between Dex, NoDex, and healthy controls for a subset of sig-
nificantly detected receptor-ligand interactions (*adj. p <0.1, **adj. p <0.001, ***adj.
p <0.0001, ****adj. p <0.00001; BH-adjusted). Ns reported in Fig. S8 and Supple-
mentary Data File 2.
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with prior observations that steroids decrease the expression of
integrin beta 2 (CD18) in activated neutrophils34. Intercellular adhe-
sion molecules enable leukocyte recruitment to injured lung and, in
patients with non-COVID-19 ARDS, increased concentrations of
sICAM-1 are associated with a higher mortality, hyperinflammatory
ARDS phenotype35,36 and dexamethasone also inhibits LPS-stimulated
ICAM-1 signaling37. ICAM-1 has additionally been reported to be
higher in non-survivors than survivors of COVID-19 related ARDS11. In
whole blood, we also observed decreased activity of collagen path-
ways with dexamethasone treatment, which may reflect a mitigation
of damage from viral injury38. The results of the network analysis
identify several dysregulated cell-signaling pathways that may be
modified by dexamethasone treatment and mediate the therapeutic
effects of steroids in each the lungs and blood.

This study significantly adds to prior studies of the effects of
steroids in patients with COVID-19 by identifying reproducible cell-
specific and compartment-specific effects of dexamethasone. Prior
observational studies have identified changes in neutrophilic inflam-
mation and gene expression associated with corticosteroids in
patients with COVID-19. Steroids were associated with decreased BAL
neutrophils in a case series of 12 patients with COVID-19 ARDS who
required ECMO39. In patients with non-resolving ARDS, steroid treat-
ment was associated with decreased BAL concentrations of the neu-
trophil chemoattractants CXCL1 and CCL2040. Two observational
studies have described the effects of dexamethasone on gene
expression in patients with COVID-19 ARDS. Sinha et al. compared
peripheral scRNA-seq data from six dexamethasone-treated patients
to eight controls, and found that dexamethasone was associated with
decreased annexin signaling, increased circulating immature neu-
trophils, and suppression of interferon-stimulated neutrophils7. The
second compared bulk RNA sequencing in BAL samples from eight
patients treated with dexamethasone to four who did not receive
dexamethasone, and identified genes that were differentially expres-
sed between the groups related to B cell activation, leukocyte traf-
ficking, and antigen presentation8. Our results build on these prior
studies, and support a model of dexamethasone mitigating excess
inflammatory damage in severe COVID-19 by reducing the immune
response to viral infection via decreased antigen presentation and T
cell recruitment and activation.

Our results suggest dexamethasone has distinct effects on pul-
monary and systemic inflammation and repair in patients with COVID-
19, consistent with prior findings from lung injurymodels. Michel et al.
challenged healthy volunteers with inhaled LPS and observed an
increase in sputum and peripheral blood inflammatory biomarkers.
Prednisolone 10mg had no effect on airway inflammation but mark-
edly decreased plasma CRP concentrations41. Bartko et al. bronch-
oscopically instilled LPS into lung segments of healthy volunteers and
saline into a contralateral segment. Pretreatment with 40mg of dex-
amethasone 13 h and 1 h before LPS challenge markedly decreased
systemic inflammation biomarker levels, BAL neutrophilia, and BAL
protein concentrations, but only minimally decreased BAL IL-6 con-
centrations and had no effect on BAL TNF or IL-8 concentrations5. We
observed several cell- and compartment-specific differences in gene
expression associated with dexamethasone treatment, emphasizing
the importance of studying respiratory illness biology not only sys-
temically, but also at the site of injury.

This integrated analysis should inform the design of future clin-
ical, translational, and basic studies of COVID-19 biology. We observed
decreased signatures of T cell activation in patients who were treated
with steroids. This likely suppresses viral clearance, whichmay explain
the increased viral antigen in COMET patients treated with steroids
and higher viral loads in experimental models42. This suppression of
antiviral responses may also explain the trends toward increased
mortality in patients who received steroids before they required sup-
plemental oxygen in the RECOVERY dexamethasone trial2 and is an

important consideration the design of future studies of steroids in
patients with respiratory infections. While T cell activation was rela-
tively suppressed, immune signaling pathways remained dysregulated
in COVID-19 patients who received steroids compared to healthy
controls, which may explain why patients who are treated with dex-
amethasone still benefit from additional immunomodulatory thera-
pies. In the RECOVERY platform trial, tocilizumab, an IL6-receptor
antagonist, decreased mortality by 15% in a cohort where 82% of
patients received steroids, and baracitinib, a JAK inhibitor, decreased
mortality by 20% in a cohort where 95% received steroids28,43. Further
study is required to understand whether therapies for pathways that
remain dysregulated after steroids (e.g., with selectin P ligand pathway
inhibitors) can further improve outcomes in COVID-19. Steroids also
have numerous adverse effects, and more narrowly targeted treat-
ments that treat pathways modified by steroids may provide the same
benefit with fewer adverse effects.

This study has several strengths. We selected subjects from a
deeply phenotyped observational cohort and integrated multiple
assays to identify compartment- and cell-specific differences in the
responses to dexamethasone. We build on prior studies by examining
both the systemic andpulmonarybiology ofCOVID-19 together,which
provides more complete insight into the pathophysiology of critical
respiratory illness. We usedmixed effects modeling to compare single
cell RNA expression, which addresses the pseudo-replication bias
present in prior clinical single cell studies and produces more con-
servative and reproducible estimates of differential gene expression.
Our findings extend our understanding of corticosteroids in critical
respiratory illnesses, at the gene, protein and cellular levels. Future
studies using similar methods can assess whether these observations
are generalizable to patients with other critical illness syndromes, such
as sepsis or ARDS.

This study also has some limitations. COMET is an observational
study, so treatment with dexamethasone was not randomly assigned,
and we cannot rule out confounding by other unobserved variables
that also changed during the study period. However, we carefully
selected patients for inclusion in both the Dex and NoDex cohorts to
minimize the effects of practice variation (Methods). As discussed
above, we also observed higher plasma N-antigen concentrations in
COMET patients who received dexamethasone. While Dexamethasone
notably impairs viral clearance in experimental models of SARS-CoV2
pneumonia42, we cannot confirm steroids are responsible for this
effect in our cross-sectional dataset. Reassuringly, many of our
observations are reproducible in external cohorts and are consistent
with experimentally confirmed effects of dexamethasone. Secondly, it
is challenging to temporally align specimens from critically ill patients,
who have dynamic and rapidly changing biology. This variance can
introduce additional within-group biological heterogeneity and bias
comparisons toward the null; despite this challenge, we were able to
identify robust and reproducible signals using multiple modalities,
suggesting the date of intubation was a suitable reference timepoint
for sample collection. Because this was an observational, cross-
sectional study, we cannot determine if differences in cell- and
compartment-specific gene expression represent proliferation of cell
lines, changes in cell polarization, and/or translocation of cells
between the pulmonary and systemic compartments.

In summary, we identified cell- and tissue-specific differences in
the effects of dexamethasone in critically ill patients with COVID-19.
This includes a reproducible increase in interferon gene signatures in
dexamethasone-treated patients, potential evidence of steroid-
resistant interferon gene signaling in response to a putative higher
viral load in dexamethasone-treated patients. We see evidence of
decreased antigen presentation (MHCII pathway signaling) and
reduced co-stimulation genes and pathways, paired with signatures of
decreased T cell recruitment and activation, which may contribute to
dexamethasone’s effect of reduced immune-related damage. Our
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results provide new insights into potential therapeutic targets in
COVID-19 and highlight the importance of studying compartmenta-
lized immune responses in critically ill patients.

Methods
Study
We conducted a case-control study of mechanically ventilated COVID-
19 ARDS patients with (Dex) or without (NoDex) administered dex-
amethasone. The patients used in this study were a subset of the
participants enrolled in the COMET study (COVID-19 Multi-
immunophenotyping projects for Effective Therapies https://www.
comet-study.org/), which had a partial overlap with the IMPACC
(IMmunoPhenotyping Assessment in a COVID-19 Cohort)9. Some of
the data derived from these patient samples have been presented in
prior publications from the IMPACC and COMET consortia10,44,45 and
some is presented here for the first time, which is delineated per
modality in the following sections and further specified in Supple-
mentary Data File 2 and Fig. S8. These patients were enrolled either at
the University of California, San Francisco Medical Center (UCSFMC)
and Zuckerberg San Francisco General Hospital (ZSFG). The COMET
studywas approved by theUCSF Institutional Review Board (IRB #: 20-
30497). We included patients who were enrolled between April 2020
and Mar 2021. The NoDex group (n = 16) included patients enrolled
before July 2020, when the dexamethasone became the standard of
care for COVID-19. The Dex group (n = 27) included patients enrolled
after July 2020. The patients were enrolled in a study within the first
72 h of hospitalization. The blood sampleswere collected on the day of
enrollment (“Study Day 0”) and tracheal aspirates were collected
within four days of enrollment.We selected only a single timepoint per
patient in each assay for this study.

Subjects
Consent. Informed written consent was obtained from subjects or
their surrogates. If a patient was unable to consent due to critical
illness and a surrogate was unavailable, the UCSF IRB granted a waiver
of initial consent. For all subjects included in this study, informed
consent was either obtained at enrollment, or follow-up consent was
then obtained from the patient if they regained the ability to consent,
or from a surrogate if they did not.

As the COMET database is regularly updated, we chose to freeze
our list of included patients based on a snapshot of the database as of
May 9, 2022. To be selected, patients had tomeet all following criteria:
confirmed COVID-19 infection; ICU admission record or WHO COVID-
19 severity score of 6 or more at any point during hospital stay; not on
an immunosuppressive therapy; for dexamethasone-treated patients,
not be on a different steroid with an overlapping range, or prior
admission; complete and unambiguous treatment record available;
and intubated (Table S1, Fig. S1).

Data acquisition
Luminex assay for plasma cytokines. The soluble plasma cytokines
were quantified using the Luminex multiplex platform (Luminex,
Austin TX)10. Briefly, the analytes were quantified using the Luminex
multiplex platform with custom-developed reagents (R&D Systems,
Minneapolis, MN), as described in detail46 or single-plex ELISA (R&D
Systems, Minneapolis, MN). The quantified analytes were read on
MAGPIX® instrument and the raw data was analyzed using the xPO-
NENT® software. Analytes quantified using single-plex ELISA were read
using optical density. Values outside the lower limit of detection were
imputed using 1/3 of the lower limit of the standard curve for analytes
quantified by Luminex and 1/2 of the lower limit of the standard curve
for analytes quantified by ELISA.

Bulk RNA sequencing of PBMCs. The bulk RNA sequencing library
preparation for PBMC was performed using SMART-Seq Low Input

protocol for all samples in COMET and IMPACC studies as described
here44. Briefly, RNA was extracted from 2.5 × 105 PBMCs using the
Quick-RNAMagBeadKit (Zymo)withDNasedigestion. RNAqualitywas
assessed using a Fragment Analyzer (Agilent) and 10 ng RNA was used
to synthesize full length cDNAusing the SMART-Seq v4Ultra Low Input
RNA Kit (Takara Bio). The cDNA was purified using bead cleanup, fol-
lowed by library preparation using Nextera XT kit (Illumina). Libraries
were validated on a Fragment Analyzer (Agilent), pooled at equimolar
concentrations, and sequenced on an Illumina NovaSeq6000 (Emory)
at 100 bp paired-end read length targeting ~25 million reads per sam-
ple. Data for ten out of the 21 samples usedherewere obtained froman
IMPACC publication44. The details on individual samples are included
in Supplementary Data File 2.

Single-cell RNA sequencing of TA and WB. The single cell RNA
sequencingofTA andWBsampleswas performed for all samples in the
COMET study10,45. Briefly, the TA samples were transported to a BSL-3
laboratory, 3mL of TA was dissociated using 50 µg/mL collagenase
type 4 (Worthington), and 0.56 ku/mL of Dnase I (Worthington). The
single-cells were collected by centrifugation and counted, and the
CD45-positive cells were enriched using MojoSort Human CD45 beads
(Biolgenend) and counted again before library preparation. The
scRNA-seq of whole blood was performed to preserve granulocytes.
Briefly, the peripheral blood was collected into EDTA tubes (BD,
366643). 500μl of peripheral blood was treated with RBC lysis buffer
(Roche, 11-814-389-001) according to the manufacturer’s instructions
and the single cells were collected and counted. For both TA and WB
samples, the Chromium Controller was loaded with 15,000 cells per
sample following the manufacturer’s instructions (10X Genomics).
Some samples were pooled together (at 15,000 cells per sample)
before GEM partitioning. A Chromium Single Cell 5′ Reagent Kit v2
(10X Genomics) was used for reverse transcription, cDNA amplifica-
tion and library construction of the gene expression libraries (follow-
ing the detailed protocol provided by 10X Genomics). Libraries were
sequenced on an Illumina NovaSeq6000. Data for three out of the 10
WB samples from COVID-19 patients and all WB samples from healthy
controls were obtained from a previous COMET publication10. Data for
threeout of 17 TA samples fromCOVID-19 patientswere obtained from
another COMET publication45. The details on individual samples are
included in Supplementary Data File 2.

Cytokine analysis
Cytokine data was represented using principal component analysis.
For this analysis only, variables with more than 10% missing values
across the dataset were excluded. Patients with one ormore remaining
missing values were filtered out. Values were then log2-transformed
and scaled. A PERMANOVA test was performed using Euclidean dis-
tances to estimate separation of the treatment groups. To compare
circulating cytokine levels, Wilcoxon rank-sum tests on cytokine con-
centrations, including those with more than 10% missing values, were
employed. Significant differences were selected using a 0.1 threshold
on BH-adjusted p-values.

Bulk RNA sequencing analysis
Gene counts were generated using the nf-core rnaseq pipeline v3.3
(https://nf-co.re/rnaseq) and Salmon-generated counts were used for
the analyses.

For the analysis of bulk gene expression data, the R package
DESeq2 (v1.28.1) was used. Age and sex assigned at birth were
included as covariates in themodel. The log fold-change values were
shrunk using the apeglm algorithm. A 0.1 threshold on BH-adjusted
p-values was used to identify differentially expressed genes. Gene
set enrichment analysis was performed on the full list of genes
sorted by shrunken log fold-change values with the fgsea package
(v.14.0) and the REACTOME gene set database. Significantly
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disrupted pathways were identified using a 0.1 threshold on BH-
adjusted p-values.

Integrative analysis
DIABLO (v6.14.11), a supervised multi-omics data integration tool, was
selected to analyze coordinated changes across cytokine and bulk
PBMC data, and to identify variables driving the differences between
NoDex andDexpatients.DIABLOextends sparsegeneralized canonical
correlation analysis (sGCCA) to a supervised framework. sGCCA uses
singular value decomposition and selects correlated variables across
several omics datasets, such that the covariance between linear com-
binations of variables (latent component) is maximized.

Only intubated patients with both cytokine and bulk PBMC data
measurements were selected for the integrative analysis. Scaled log2
transformed cytokine values and scaled variance stabilization trans-
formed counts for the 500 most variable genes were used as input.
DIABLO’s parameter design (range 0–1) indicates the extent to which
covariance between data modalities should be maximized vs. covar-
iance between individual data modalities and treatment status. We
chose a value of 0.5 to balance the contribution of those two covar-
iances for our analysis.

Single-cell RNA sequencing analysis
Data processing. The BCL files from sequencer were demultiplexed
into individual libraries using mkfastqs command in Cellranger
3.0.1 suite of tools (https://support.10xgenomics.com). The feature-
barcode matrices were obtained for each library by aligning the WB
raw FASTQ files to GRCh38 reference genome (annotated with
Ensembl v85) and TA raw FASTQ files to GRCh38 + SARS-CoV-2 refer-
ence genome using Cellranger count. The raw feature-barcode matri-
ces were loaded into Seurat 4.0.3, and cell barcodes with minimum of
100 features were retained in order to remove the droplets lacking
cells. The features that were detected in less than 3 barcodes were
removed, and the expression data was log-normalized using Normal-
izeData() function within Seurat. Our dataset contained three samples
that were multiplexed for 10X library preparation and the rest were
processed individually. For the samples that were processed indivi-
dually, the heterotypic doublets were detected using DoubletFinder47

bymatching each cell with artificially synthesizeddoublets.Weused 35
PCs, pN=0.25 and sct=TRUE in DoubletFinder. An optimal pK value (PC
neighborhood size used to compute pANN) was determined for each
sample separately using find.pK function as suggested by the authors.
We approximated the doublet rate as 7% based on 10X’s recommen-
dation for the expected doublets when 15,000 cells were loaded on
the 10X handler (https://kb.10xgenomics.com/hc/en-us/articles/
360001378811). DoubletFinder requires cell annotations to deter-
mine the rate of heterotypic doublets. We clustered the cell barcodes
using Louvain clustering and the cluster labels were used as cell
annotations. We removed the heterotypic doublets and subjected the
remaining barcodes for further quality control.

Our dataset contained three samples that were multiplexed, for
which the filtered count data for singlets were obtained from
GSE16366810. The authors usedDemuxlet48 to demultiplex the samples
and to identify inter-sample doublets, and DoubletFinder to identify
heterotypic doublets. Single cells with greater than 50,000 unique
RNA molecules, fewer than 150 or greater than 8000 features, greater
than 15% mitochondrial content or greater than 60% ribosomal con-
tent were removed. The cell cycle state of each cell was assessed using
a published set of genes associated with various stages of human
mitosis49.

The WB data from healthy controls was obtained from
GSE16366810, the external validation WB data from COVID-19 patients
from GSE1577897 and the external validation bronchoalveolar lavage
(BAL) fluid data from GSE14592619. The same data processing strategy
was used for these datasets as for our datasets described above.

Data integration and UMAP generation. There was a substantial
heterogeneity between samples within treatment groups, most likely
due to technical variations introduced during the library preparation
that spanned over months. Even if this heterogeneity is due to biolo-
gical differences, this heterogeneity could cause substantial issues in
mapping same cell types across samples. To account for this, we
integrated the samples using Seurat’s CCA integration approach (Fin-
dIntegrationAnchors and IntegrateData functions)50, while treating
each sample as its own batch. The integrated data was scaled while
regressing out feature counts, RNA counts, mitochondrial percentage,
ribosomal percentage and cell states. After reducing the data to lower
dimensions (PCs), 30 PCs were used for UMAP generation. The CCA
integrated data was used only for generating UMAPs. All follow-up
analyses were performed using the non-integrated data. Each tissue
was processed separately.

Single-cell annotation. Automated cell annotation was performed
using SingleR51. We mapped the log-normalized expression data
against a reference expression dataset from ENCODE Blueprint52. The
fine labels of Blueprint dataset were used formapping. Many cell types
contained too few cells, which were cleaned up in two ways: the cell
types with less than 101 cells across all samples from a tissue were
labeled “other” and fine labels weremanually combined into broad cell
types for the follow up analyses.

Differential frequency analysis. The cell frequencieswere normalized
to the total cell counts per sample, multiplied by 100, and compared
between Dex and NoDex samples using Wilcoxon rank-sum test. The
log2 fold-difference was calculated by calculating the log-ratio of mean
normalized frequencies of Dex and NoDex samples after adding 0.01
to all values to avoid log-of-zero errors. TheNeutrophils were removed
before frequency normalization. No adjustment of p-values was
performed here.

Differential gene expression. To study the cell-type-specific effects of
dexamethasone in whole blood and TA samples, we compared gene
expression between Dex and NoDex samples within each tissue for
every cell-type separately. The differential expression analysis was
performed using Model-based Analysis of Single-cell Transcriptomics
(MAST)17.MASTmodels single cell expressiondatausingahurdlemodel
with the expressiondata represented as log2(transcripts permillion + 1).
The hurdle model is a two-part generalized linear model that simulta-
neously models the rate of signal over background and continuous
expression level, conditional on the gene being expressed. Specifically,
the expression level is modeled as a truncated Gaussian distribution.
This approach allows for controlling for both the non-detectable signal
(zero inflation; which is prevalent in scRNA-seq datasets) and the non-
zero expression. The MAST analysis was performed in the following
manner. The cell types with at least 50 cells in both conditions were
retained in the Seurat objects. For each cell type, the Seurat object was
subsetted to keep single-cell expression data for that cell type, the
subsettedobjectwas converted toSingleCellExperimentobject, and the
RNA raw counts were normalized for the library size (i.e., divided each
count by total number of UMIs per cell andmultiply by themean of the
number of UMIs per cell across all cells) and log2 transformed with
pseudocount of 1. To remove the highly sparse data, only genes with
non-zero counts in at least 5% cells in at least one condition were
retained. Finally, the zlm function was used to identify the differentially
expressed genes between Dex and NoDex samples. We also accounted
for the number of detected genes per cell by adding it as a covariate in
the model. Because transcriptomes of cells from the same sample are
not independent observations, we included patient IDs as a random
effect to account for the hierarchical nature of the data and prevent
pseudoreplication bias. Additionally, we used the following parameters
in zlm function: method= ‘glmer’, ebayes = F, strictConvergence =
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FALSE, fitArgsD= list(nAGQ=0). Finally, the P values were corrected for
multiple testing using the BH procedure.

Gene set enrichment analysis. To identify the pathways affected by
the dexamethasone treatment, we performed gene set enrichment
analysis (GSEA) on the full list of genes53. GSEA tests whether a pre-
selected set of genes is distributed randomly in a ranked gene list (the
null hypothesis) or is concentrated on one end of the list (the alter-
native hypothesis). The test statistic and the resulting p-value recapi-
tulate the likelihood of observing a given enrichment score
considering a distribution of simulated enrichment scores obtained by
random permutation of gene ranks. We used fgsea in R which is a
collection of tools allowing fast gene set enrichment analysis. We
ranked the genes by shrunken log2 fold-changes between pairs of Dex,
NoDex and healthy samples and used the fgseaMultilevel function
(nPermSimple = 10000 and minSize = 25) to perform GSEA analysis
against REACTOME pathways. Significantly different pathways were
identified using a 0.1 threshold on BH-adjusted p-values.

CellChat analysis. CellChat20 was used to identify ligand-receptor
pairs that display differential interaction strength between cells from
Dex, NoDex and healthy groups. First, differentially expressed signal-
ing genes were identified across groups using the Wilcoxon rank-sum
test. Next, probabilities for each interaction were estimated using an
equation derived from the law of mass action. Finally, the significance
of those probabilities was estimated using permutations. Each per-
mutation was generated by randomly shuffling phenotype labels (Dex
and NoDex) and computing probabilities that were then used to esti-
mate the likelihood of the observed value. The Seurat objects were
subsetted to include the cell types that had more than 100 cells in all
conditions within that tissue. Specifically, for TA data, the cell types
withmore than 100 cells in bothDex andNoDexwere retained, and for
blood data, the cell types with more than 100 cells in all groups (Dex
(COMET), NoDex (COMET), healthy (COMET), Dex (Sinha et al.) and
NoDex (Sinha et al.)) were retained. The CellChat objects were first
created for each group (condition) of cells separately using create-
CellChat() function, with Seurat’s normalized RNA data as input data.
The over expressed genes and interactions were identified based on
the CellChat database of human ligand-receptor pairs, and the
expressed data were projected on the protein-protein interaction
network. Finally, the communication probabilities were calculated, the
communications based on less than 10 cells were discarded, aggre-
gated network were calculated by summarizing the communication
probability, and saved as individual RDS files for each condition. Pairs
of conditions, for example TA Dex and TA NoDex, were compared
using rankNet to rank signaling networks based on the information
flow. The rankNet usesWilcoxon signed-rank test to identify pathways
that have significantly different communication probabilities between
a pair of conditions across cell types. We used this information flow to
find ligand-receptor pairs that exhibit significant difference in pre-
dicted interaction strength between the conditions.

Statistics
Statistical comparisons were performed using one-sample Wilcoxon
rank-sum test or Chi-squared test, for continuous and categorical
variables, respectively, unless mentioned otherwise. All p-values,
including the ones derived from independent tools were corrected
using the same procedure i.e., using the Benjamini–Hochberg (BH)
method, which controls for the false-discovery rate, unless stated
otherwise. We used the p.adjust method in R using the “BH” option, A
threshold of 0.1 was chosen to determine significance. All correlationR
values are calculated using Spearman’s correlation.

Additional analyses with associated statistical tests were per-
formedusing theMAST17, fgsea53, CellChat20, andDIABLO16 packages in
R. For differential gene expression using MAST, we modeled

differential gene expression using patient ids as a random effect and
resulting p-values were corrected for multiple testing using the BH
method. For gene set enrichment analysis using fgsea, we used the
fgseaMultilevel function and adjusted p-values using the BH method.
For receptor-ligand analysis using CellChat, Wilcoxon signed-rank
tests were used, and p-values were adjusted using the BHmethod. For
further details on their implementation andparameters, see respective
sections for each package in the methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data files used to produce the results reported in this article are
available on Gene Expression Omnibus (GEO), dbGaP or Dryad. The
computable matrix of the plasma cytokine data is deposited at Dryad
[https://doi.org/10.7272/Q6MS3R18]. The raw and processed sequen-
cing data for COMET samples used here is available at GEO under
GSE237180 SuperSeries. The FASTQ files and processed data files for
the bulk RNA-seq data are available at GEO (GSE237109) [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi], dbGaP (phs002686.v1.p1) and at
ImmPort (SDY1760). The cellranger-processed raw feature-barcode
matrices for tracheal aspirate and whole-blood are available at GEO
(GSE236030) [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi], and
the associated raw FASTQ files for 10X libraries have been deposited in
the Sequence Read Archive (SRA) https://www.ncbi.nlm.nih.gov/
Traces/study/?acc=PRJNA988459. A subset of the whole-blood data
published in our previous article10 was obtained from GSE163668 (HS1
and HS2 fromGSM4995425, HS50 fromGSM4995430, and the healthy
controls from GSM4995449- GSM4995462) The whole-blood data
reported in Sinha et al. was secured from GSE157789 and the BAL data
in Liao et al. from GSE145926. The accession numbers and sample
metadata are included in Supplementary Data File 2. Source data are
provided with this paper.

Code availability
Code used to generate the analysis results are available at https://
github.com/UCSF-DSCOLAB/COVID-dex.
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