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SUMMARY

T cells slow their motility, increase adherence, and
arrest after encounters with antigen-presenting cells
(APCs) bearing peptide-MHC complexes. Here, we
analyzed the cell-cell communication among activat-
ing T cells. In vivo and in vitro, activating T cells as-
sociated in large clusters that collectively persisted
for >30 min, but they also engaged in more transient
interactions, apparently distal to APCs. Homotypic
aggregation was driven by LFA-1 integrin interac-
tions. Ultrastructural analysis revealed that cell-cell
contacts between activating T cells were organized
as multifocal synapses, and T cells oriented both
the microtubule-organizing complex and interleu-
kin-2 (IL-2) secretion toward this synapse. T cells
engaged in homotypic interactions more effectively
captured IL-2 relative to free cells. T cells receiving
paracrine synaptic IL-2 polarized their IL-2 signaling
subunits into the synaptic region and more efficiently
phosphorylated the transcription factor STAT5, likely
through a synapse-associated signaling complex.
Thus, synapse-mediated cytokine delivery acceler-
ates responses in activating T cells.

INTRODUCTION

The stages of T cell trafficking, activation, and arrest have been

described in vivo for both CD8+ (Bousso and Robey, 2003; Mem-

pel et al., 2004) and CD4+ (Miller et al., 2002, 2003, 2004) T cells.

T cells initially scan dendritic cells (DCs), ‘‘searching’’ for cognate

peptide (Lindquist et al., 2004; Shakhar et al., 2005), and subse-

quently swarm and arrest on DCs (Hugues et al., 2004). The end

of this phase coincides with upregulation of CD25 and the initia-

tion of IL-2 secretion from T cells (Mempel et al., 2004). Chemo-

kine secretion, such as CCL3 and CCL4 produced by activated

DCs and T cells, increases the likelihood that T cells will commin-

gle in regions where other T cells are currently, or have previously

been, localized (Castellino et al., 2006; Hugues et al., 2007). This

results in both long-lived and dynamic ‘‘clusters’’ of T cells,

responding to immunization (Bousso and Robey, 2003) or auto-

antigens (Tang et al., 2006). In a third phase, T cells are released

238 Immunity 29, 238–248, August 15, 2008 ª2008 Elsevier Inc.
from DCs, migrate once again, and subsequently proliferate and

gain effector function.

In vitro, the initiating cell-cell contact between a T cell and an

antigen-presenting cell (APC) has been characterized as an im-

munological synapse (IS) (Grakoui et al., 1999; Monks et al.,

1998). Within this contact, clusters of adhesive LFA-1 molecules

surround central clusters of T cell receptors (TCRs) (Grakoui

et al., 1999; Monks et al., 1998). This stable contact facilitates

prolonged signaling as well as polarization of surface proteins

(Huppa et al., 2003; Krummel et al., 2000), the cytoskeleton (Bun-

nell et al., 2002; Kupfer et al., 1983), and secretory machinery

(Huse et al., 2006; Stinchcombe et al., 2006) toward the APC.

Despite extensive characterization of the dynamics and nature

of T cell activation, the complete impact of arrest and the ensuing

changes in both T cell motility and adherence are not well eluci-

dated. As T cells’ clustering upon activation has been a hallmark

of activated cells both in vivo (Hommel and Kyewski, 2003; Ingulli

et al., 1997) and in vitro (Inaba et al., 1984), we reasoned that

motility arrest and localized aggregation of T cells might also

encourage direct cell-to-cell crosstalk among adjacent activating

T cells. We thus sought to characterize the nature of T-T cell sur-

face interactions and the underlyingcellbiology withinT-T clusters.

Here, we present evidence that T-T clusters promote synapse-

based cytokine delivery between activating T cells. LFA-1-

mediated multifocal synapses promote the polarization of

microtubule-organizing centers and direct cytokine secretion to-

ward adjacent T cells. These interactions are functionally impor-

tant as they facilitate synapse-localized signaling complexes and

activation of STAT5, a transcription factor downstream of IL-2R

signaling.

RESULTS

Prolonged Cell-Cell Contacts between Activated
T Cells In Vivo
To gain greater insight into the dynamic nature of T cell cluster-

ing, we immunized mice with peptide in adjuvant and imaged ex-

cised lymph nodes (LNs) to specifically analyze T-T dynamics

during swarming and arrest. We adoptively transferred CFSE-la-

beled DO11.10 CD4+ T cells into wild-type (WT) BALB/c recipi-

ents and activated the cells by subcutaneous (s.c.) immunization

24 hr later with OVA 323-339 (OVA 323) emulsified in complete

Freund’s adjuvant (CFA). As a control for immunization effects,

we also analyzed LN draining of an equivalent volume of
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Figure 1. Swarming Activation Clusters

during TCR-Dependent T Cell Activation

In Vivo

Explant popliteal lymph nodes (LNs) from wild-

type (WT) BALB/c mice injected with CFSE-la-

beled DO11.10 T cells were removed 24 hr after

OVA-CFA immunization and imaged for 30 min

time lapses. Data are representative of six or

more independent experiments. Time stamp =

min:s.

(A) Projection images of 312 mm (x) 3 260 mm (y) 3

150 mm (z)-deep data stack. Left two panels: large

‘‘stable’’ (red arrows) and small ‘‘transient’’ (white

and yellow arrows) clusters are shown at two

time points in which CFSE is pseudocolored

(black/green/yellow/red) on a scale that highlights

the cell borders as a result of their slightly reduced

fluorescence intensity. Right panel: time average

of an entire 30 min run showing the spatial persis-

tence of cells in the two ‘‘stable’’ clusters and only

weak persistence of cells in the smaller clusters.

(B and C) Cropped data of two large clusters

showing fusion and dispersal.

(B) Fusion of a midsize cluster (estimated to con-

tain 3–4 cells initially) with other individual and

clustered T cells over a 2 min period. Viewing xy

and xz projections of the cluster (indicated by ar-

row) permits the same cluster to be observed as

other clusters and cells join from multiple direc-

tions.

(C) A single T cell leaves a cluster and crawls away

over a 2 min period. Note the appearance of the

green border around the departing cell at min 1, in-

dicative of the movement out of the cluster in xy

(upper panels) and xz (lower panels) dimensions.

(D) Dwell time of transient ‘‘small’’ clusters as

a function of immunization condition. Any close

T-T contact was scored for the length of interac-

tion prior to dispersal and represented as a percent

of total T-T interactions scored. PBS only, unim-

munized control; OVA-CFA, draining LN; PBS-

CFA, control immunized LN. At least 19 couples

were scored for each condition.
phosphate-buffered saline (PBS) and CFA. After 24 hr, popliteal

draining (OVA-CFA) and nondraining (PBS-CFA) LNs were ex-

cised, mounted to coverslips, and imaged by two-photon laser

scanning microscopy (TPLSM). In Figure 1, we show CFSE on

a pseudocolor scale where the center of the T cell body appears

red and the fainter outer region of the cell (typically dimmer be-

cause the CFSE is fainter at or just beyond the pixels bearing

membrane) is color coded green. This display highlights close

associations; the green border is lost at points where the cell

bodies become closely apposed (see Figures 1A–1C). We found

large (>3 cells, often much larger) clusters of T cells deep within

the LN (>150 mm below the capsule), with persistent interactions

in the draining LN (Figure 1A, red arrows) that remained occupied

by T cells for a full 30 min (see Movie S1 available online). The fre-

quency of the very large clusters was variable, but over >5 exper-

iments scored, we found an average of 6.6 per mm3 of the large

clusters shown in Figure 1A per LN surveyed, 18–22 hr after im-

munization. Though persistent on the whole, these large clusters

were also somewhat dynamic, with ongoing evidence of coales-

cence, for example when multiple clusters joined (Figure 1B) or
individual cells dissociated (Figure 1C; Movie S2) from existing

clusters. Notably, unactivated (antigen-nonspecific) cells did

not participate in these clusters to the same degree as activated

cells (Movie S3).

The ability of T cells to self-associate for longer times was not

purely confined to these large clusters. We also observed tran-

sient contacts that occurred when individual or small numbers

of motile T cells in this phase encountered one another in regions

that were otherwise devoid of labeled cells (Figure 1A, white and

yellow arrows). A time average of the entire field demonstrated

the local persistence of cells over time at the large clusters,

whereas another population of smaller clusters were frequently

more transient (Figure 1A, right panel).

For these smaller, more transient aggregates, we measured

the length of time that a given T cell remained in close associa-

tion with another T cell, starting from the point at which we could

first see them in close proximity. All of the T-T interactions mea-

sured in control mice that received labeled cells transferred with-

out immunization (LNs taken 24 hr posttransfer) were 2.5 min or

less in duration (mean 1.0 min), revealing a background of only
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Figure 2. Dynamic Activation Clusters In Vitro Utilize

LFA-1 to Assemble

(A) Whole DO11.10 LN cells were activated in vitro with titrated

doses of OVA 323 (0–1 mg/ml); wells were photographed at the

indicated time points. The cross-sectional (xy) area of clusters

is shown as a function of time. Data are representative of two

independent experiments.

(B) DO11.10 CD4+ T cells were activated with PMA and iono-

mycin or titrated plate-bound anti-CD3 with soluble anti-CD28

(5 mg/ml); cluster formation over time is represented as in (A).

Data are representative of two independent experiments.

(C) C57BL/6 CD4+ T cells (90% unlabeled, 10% CFSE labeled)

were stimulated with PMA and ionomycin, and time-lapse mi-

croscopy was performed 18 hr after stimulation. Differential in-

terference contrast (DIC) and green fluorescence from CFSE

were acquired every 20 s over 5 min. White arrows indicate

a dissociating cell, red arrows indicate a cell joining a cluster,

and yellow arrows indicate a persistent cluster. Time stamp =

min:s.

(D and E) B6 WT or LFA-1-deficient Itgb2�/�CD4+ T cells were

stimulated for 20 hr with PMA and ionomycin. At 18 hr, some

B6 WT cells were treated with anti-CD11a (LFA-1) antibody

(20 mg/ml). Cluster formation was assessed at 20 hr as above.

(D) shows representative pictures of clusters; (E) shows graph-

ical representation of clustering. *, two-sample t(94) = 1.986,

p = 1.14 3 10�13; **, two-sample t(93) = 1.986, p = 1.75 3

10�12. Data are representative of two to three independent

experiments. Error bars in (E) represent SD.
short T-T interactions (Figure 1D). Immunization in adjuvant led

to a population of intermediate-length (3–6.5 min) interactions

for both PBS-CFA (14.3%) and OVA-CFA (9.7%), suggesting

that inflammation and the ensuing shift toward lower motility

(Hugues et al., 2004; Shakhar et al., 2005) favor somewhat longer

interactions. Relative to this nonspecific background, peptide-

specific immunization (OVA-CFA) gave rise to a population

(9.2% of all T-T encounters) with longer kinetics (Figure 1D). Al-

though this population was not large and the maximal duration

of these transient T-T clusters rarely exceeded 10 min, if ex-

tended over many hours, these small T-T clusters are likely to

result in multiple associations for cells during the course of

activation.

APC-Dependent or -Independent Stimuli Result
in Dynamic LFA-1-Mediated T Cell Cluster Assembly
In Vitro
While TPLSM is ideally suited to studying the dynamics of cell-

cell association, an in vitro system was required to ascertain

the exact nature of the cell-cell contact. By engaging TCRs on

T cells in vitro in the presence or absence of APCs, we studied

the requirement for APCs in mediating T cell homotypic adhe-

sion.

Whole-LN preparations from DO11.10 mice were activated

with titrated doses of OVA peptide, and cluster size was tracked

over 72 hr. As with the in vivo setting, activation-induced T-T ag-

gregation began approximately 16 hr after stimulation, and cells

joined over time to form larger arrays of T cells in clusters. Clus-

tering kinetics and extent were antigen dose dependent (Fig-

ure 2A). Furthermore, self-aggregation by T cells stimulated with

either anti-CD3 antibody plus anti-CD28 antibody or phorbol

12-myristate 13-acetate (PMA) plus ionomycin in the absence

of APCs indicated that this ability to self-aggregate is a capacity
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gained after cell activation but not absolutely requiring a nucleat-

ing APC (Figure 2B).

Clusters generated in the absence of APC-based ISs also re-

sembled the in vivo scenario insofar as the T cells in the clusters

remained motile and associations were highly dynamic. As

shown in Figure 2C and Movie S4, we seeded 10% CFSE-la-

beled CD4+ C57BL/6 T cells into a culture with identical unla-

beled cells and activated them for 18 hr with PMA and ionomy-

cin. The resulting clusters demonstrated both stability (yellow

arrow) and plasticity, with T cells both joining (red arrow) and

leaving (white arrow) clusters similarly to that seen in vivo. The

ongoing cell motility in vitro and high plasticity argue against

a random aggregation model and instead suggest that T cells ac-

tively engage in stable interactions with one another in the course

of ongoing motility and might do so via specific mechanisms,

such as integrin-mediated adhesion.

Given that the primary T cell integrin, LFA-1, is required for ini-

tiation of activation when APCs are stimulators, we used APC-in-

dependent activating stimuli to probe the role of LFA-1 in driving

self-aggregation of CD4+ T cells. This permitted study of T cells

derived from LFA-1-deficient (Itgb2�/�) mice or of WT cells in the

presence of blocking antibody against LFA-1 (anti-CD11a).

There was a significant reduction (two-sample t(93) = 1.986,

p = 1.75 3 10�12) of activation-induced T cell clustering in cells

from Itgb2�/�mice (Figures 2D and 2E) activated with PMA and

ionomycin as compared to cells from WT mice. After cluster as-

sembly, and in accord with previous studies (Rothlein and

Springer, 1986), the addition of CD11a antibody, but not anti-

bodies against other adhesion receptors (including Jam-1,

MAC-1, VCAM, a4, and a4b7; data not shown), effectively dis-

persed these aggregates in WT CD4+ T cells (two-sample

t(94) = 1.986, p = 1.14 3 10�13), demonstrating that LFA-1 serves

as a primary source of adhesion for T-T contacts (Figures 2D

and 2E). Similar results were observed using anti-CD3 plus
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anti-CD28 stimulation (data not shown). This confirmed that T-T

clustering in vitro is activation mediated but does not require

a bridging DC. Staining of clusters with antibodies to LFA-1 (Fig-

ure S1) also showed specific enrichment of this protein in the re-

gions of close juxtaposition, further highlighting that this process

is active rather than passive. Notably, only modest enrichment of

CD86 (Figure S1), MHC, TCR, CD4, and CD28 (data not shown)

was observed in T-T synapses, which contrasts these with the

ISs formed between T cells and APCs (Krummel et al., 2000;

Monks et al., 1998; Pentcheva-Hoang et al., 2004).

T-T Interactions Proximal and Distal to T-APC Synapses
T-T interactions are activation induced, as evidenced by the re-

quirement both in vitro and in vivo for TCR stimulation preceding

T-T clustering (Figure 1; Figure 2). The data in Figure 2 suggested

that DCs are not required to mediate homotypic aggregation.

However, to determine the relative DC dependence or indepen-

dence of T-T interactions when stimulation is driven by DCs

in vivo or in vitro, we localized DCs within the context of clusters.

To achieve this in vivo, we transferred CMTMR-labeled OT-II

CD4+ T cells into CD11c-YFP mice (Lindquist et al., 2004), immu-

nized s.c. with OVA-CFA, and imaged LN draining via TPLSM

after 24 hr. As shown in Figure 3A and Movie S5, the vast majority

of T cells form large clusters around DCs, with T cells concur-

rently engaging in homotypic interactions. We also were able

to visualize the smaller cohort of T cells engaging in homotypic

interactions at some distance from the nearest DC (Figure 3A).

It is worth noting that very thin dendrites may project from the

DC in Figure 3A, and so it is not formally possible in this context

to exclude a role for DCs in the aggregate. Additionally, given the

density of DCs within the T cell zone of the LN, DCs are certainly

always very nearby.

Similarly, T-T interactions proximal to and distal from the DC

body were observed in vitro when OT-II CD4+ T cells were acti-

vated by CFSE-labeled bone marrow dendritic cells (BMDCs)

prepulsed with OVA 323. As shown in Figure 3B, T cells packed

tightly around central DCs (blue), and additional T cells extended

to peripheral parts of the cluster, away from close contact with

the nucleating DC. Again, although small dendrites may assist

in these contacts, taken together with the data from Figure 2, it

appears likely that activating T cells acquire some affinity for

one another, independent of DCs.

T-T Contacts Are Mediated by Multifocal Synapses
The T-T cluster requirement for adhesion molecules and forma-

tion in the absence of added or apparent APCs both in vivo and in

vitro suggested that a homotypic LFA-1-mediated synapse-like

structure might facilitate T-T interactions in a fashion similar to

T cell-APC synapses. Electron microscopy (EM) analysis dem-

onstrated that T-T synapses formed between activated T cells

with strong membrane apposition similar to that seen at a typical

IS between a T cell and DC (Brossard et al., 2005) (Figure 4A). Of

particular note are the synaptic spaces (arrowheads in Figure 4B)

at the contacts, indicative of a multifocal synapse with substan-

tial intercellular volume enclosed by the apposed membranes.

Furthermore, EM sections in which intracellular vesicles could

be observed frequently showed those vesicles to be oriented

toward the adjacent T cells (Figure 4C), further suggesting that

these encounters were not passive.
Polarized MTOC and Secretion of IL-2 at T-T Synapses
Reorientation of a migrating cell upon pMHC-induced arrest

results in the polarization of the Golgi apparatus and microtu-

bule-organizing complex (MTOC) toward the point of contact, al-

lowing for the alignment of intracellular organelles and secretion

of effectors into the synapse (Kupfer et al., 1983). Staining for the

MTOC-associated protein pericentrin at T-T synapses (Fig-

ure 5A) indicated an 80% bias in the polarization of the tubulin

cytoskeleton inward toward adjacent T cells. In the right panel

of Figure 5A, we assessed whether this bias was due to specific

polarization of pericentrin as opposed to simple availability of T-T

contact interface versus free membrane. If the bias toward polar-

ization ‘‘in’’ were due simply to a high percentage of available T-T

contact interface (versus free membrane), one would predict that

Figure 3. Relationship of T-APC Contacts to T-T Contacts

(A) CMTMR-labeled OT-II CD4+ T cells were injected into CD11c-YFP mice,

which were immunized subcutaneously with OVA-CFA, and the draining LN

was isolated for TPLSM after 24 hr, corresponding to phase II of T cell activa-

tion. A region containing clusters demonstrates a majority of T cells forming

simultaneous contacts with antigen-presenting cells (APCs) and one another

and a smaller cohort engaging in homotypic interactions at some distance

from the nearest dendritic cell (DC). The white arrow indicates a T-T contact

distal to adjacent DC cell bodies. Note that the T cell zone contains a meshwork

of DCs, and it is highly probable that any T cells will lie within a distance of less

than 20 mm from a visible DC body while within this zone, regardless of their

potential interactions.

(B) OT-II CD4+ T cells were activated in vitro for 20 hr with C57BL/6 bone mar-

row dendritic cells (BMDCs) prelabeled with OVA 323 and CMAC (blue). Note

that some lateral T-T interactions occur for T cells directly contacting APCs,

whereas additional T cells homotypically interact beyond the evident DC

border. Data are representative of at least three independent trials.
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Figure 4. Ultrastructural Features of T-T

Clusters

BALB/c WT CD4+ T cells were stimulated with

PMA and ionomycin; 18 hr after stimulation, elec-

tron microscopy was performed.

(A) Representative image of interacting T cells,

with inset showing a T-T interface.

(B) Magnification of a T-T synaptic region showing

synaptic gaps (arrowheads) between tightly ap-

posed membranes.

(C) Representative view of cell conjugate showing

intracellular vesicles positioned opposite one

another in the two primary cells.
the percent of T-T contact would correlate directly to the per-

centage of protein facing inward (i.e., 10% T-T contact and

90% free membrane results in 10% pericentrin ‘‘in’’ and 90%

pericentrin ‘‘out’’). However, when tested against this hypothe-

sis, the observed percentage of pericentrin facing ‘‘in’’ was sig-

nificantly higher than that predicted for 0%–33% (p = 0.00001)

and 33%–66% (p = 0.002) T-T contact (Figure 5A, graph). This

suggested that activating T cells selectively polarize toward

one another, potentially to facilitate the organization of effector

molecules, secretion, and signaling at T-T interfaces. To directly

test whether T-T synapses polarized cytokine secretion, we

stained aggregates for intracellular IL-2. As demonstrated previ-

ously (Huse et al., 2006), IL-2-containing vesicles were direction-

ally polarized toward APCs when an APC was the neighboring

cell (Figure 5B, small arrow). However, when T cells on the

edge of large aggregates (only including those where molecules
had the ‘‘choice’’ of inward or outward polarization) were exam-

ined for the polarization of intracellular IL-2, there was a strong

bias (84.6%) in these vesicles toward polarization to an adjacent

T cell (Figure 5B, large arrows). Similarly, when large aggregates

of T cells, activated independently of APCs by PMA plus iono-

mycin, were examined, over 80% of all contacts demonstrated

strong polarization of IL-2 pools facing inwards (Figure 5C).

T-T Synapses Facilitate Capture of Secreted Cytokines
The data from Figure 5 strongly suggested that T cells in clusters

would have a benefit in terms of their exposure to IL-2 as a result

of the localized secretion. To test whether this was the case, we

took advantage of a ‘‘catch’’ antibody detection system that

uses a surface-binding antibody to locally capture IL-2 on the

cell that is exposed to it. By coating cells with this antibody prior

to activating them with an APC-independent stimulus (Figure 6A,
Figure 5. Polarized Secretion and Receptor Aggre-

gates between T Cells in Clusters

(A) Pericentrin is detected facing inward after activation with

PMA and ionomycin. DO11.10 CD4+ T cells were stimulated

for 19 hr with PMA and ionomycin; permeabilized clusters

fixed to slides were stained with purified anti-pericentrin anti-

body. Pericentrin is shown as red dots; white arrows indicate

pericentrin stain localized into cluster; red arrows indicate

pericentrin pointed outward from T cluster. The graph repre-

sents the actual percent of pericentrin ‘‘in’’ (black bars) versus

the predicted percent of pericentrin that would be expected

to face ‘‘in’’ (gray bars) if the polarization were due to the

percent of available T-T membrane interface (x axis). *p =

0.00001, **p = 0.002 by chi-square goodness-of-fit test.

(B) IL-2 is polarized inward toward DC and T contacts in clus-

ters when activated by peptide-pulsed DCs. OT-II CD4+ T cells

were activated for 20 hr with actin-CFP+ BMDCs prepulsed

with OVA 323 (10 mg/ml). Permeabilized clusters were stained

with anti-IL-2 antibody. DCs are shown in blue on wide-field

DIC overlay and IL-2 in red. In the graphs, IL-2 localization is

represented as the percent of IL-2+ T cells pointing toward

a DC or away from the DC for all IL-2+ T-DC pairs (left graph)

and as the percent of IL-2+ T cells pointing in toward a facing

T cell or pointing away from a neighboring T cell for all IL-2+ T-T

pairs (only border cells scored) (right graph). *p < 0.0004,

**p < 0.005.

(C) IL-2 is polarized inward toward T-T contacts after PMA and

ionomycin stimulation. DO11.10 CD4+ T cells were stimulated

as in (A) and stained as in (B). IL-2 is shown on a grayscale in a

z reconstruction of a large (left) and a small (right) cluster. IL-2

localization is graphically represented as the percent of IL-2+ T

cells pointing in toward a facing T cell (black bar) or pointing

away from a neighboring T cell (gray bar). The average ex-

posed surface was at least 50% for all of these measurements.

*p < 0.0001.
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left), we were able to reveal accumulated IL-2 in clusters to de-

termine whether T cells in these arrays were preferentially ex-

posed to IL-2 relative to those that did not participate. This assay

revealed that T cells in clusters (Figure 6B) accumulated puncta

of IL-2 on their surface and that this surface accumulation was

almost universally directed inward toward the cluster (isolated

two-cell cluster shown in Figure 6C; see Movie S6 for 3D render-

ing). In contrast, cells from the same culture condition that were

not involved in a cluster (Figure 6D) had 2-fold less fluorescence

intensity per cell on average, a measure of the total amount of

IL-2 captured (Figure 6E). The staining pattern for these was typ-

ically much more even, although faint puncta on the surface

could occasionally be discerned, perhaps a result of a synaptic

delivery during a transient encounter. To rule out the possibility

of aggregation of the catch ligand itself in the synaptic space,

we also coated cells with catch reagent after stimulation and fix-

ing and stained with rhodamine-conjugated secondary antibody

against catch reagent (Figure 6A, right). The bright puncta were

not evident in clusters (Figure 6F), and the intensity of clustered

and free cells for this marker was indistinguishable (Figure 6G).

This supports the interpretation that IL-2 was locally captured

Figure 6. Preferential Capture of IL-2 within Synaptic Regions of T-T

Clusters

(A) Scheme for identifying spatial parameters for IL-2 capture by T cells.

(B–E) IL-2 ‘‘catch’’ reagent-coated BALB/c WT CD4+ T cells were stimulated

with PMA and ionomycin for 19 hr, fixed with PFA, and stained with phycoer-

ythrin-conjugated IL-2 detection antibody. Representative images of clustered

cells (B and C) and free cells (D) and mean fluorescence intensity of IL-2 detec-

tion antibody staining per cell (n = 586 for clustered cells; n = 52 for free cells)

(E) are shown. Data are representative of three independent experiments.

(F and G) BALB/c CD4+ T cells were stimulated with PMA and ionomycin for

19 hr, fixed with PFA, coated with IL-2 catch reagent, and stained with rhoda-

mine-conjugated secondary antibody against catch reagent (anti-catch).

Representative image of clustered cells (F) and mean fluorescence intensity

of secondary antibody staining per cell (n = 215 for clustered cells; n = 28

for free cells) (G) are shown.

All fluorescence images are maximum projection of z stacks. Error bars in (E)

and (G) represent SD.
on the catch reagents in Figure 6B and subsequently detected

as T-T localized puncta. Furthermore, the data support that cells

that are not engaged in synaptic contacts accumulate less syn-

aptic IL-2 (indeed, also less overall; Figure 6E) as compared to

synapse-engaged T cells.

IL-2 Signaling Is Polarized at T-T Synapses
The data above suggested a synaptic basis for IL-2 signaling be-

tween activated T cells. IL-2 binds to a nonsignaling alpha chain

(CD25) as well as two signaling-competent beta and gamma

chains (CD122 and CD132 [gc], respectively). Although anti-

bodies against CD122 were not sensitive enough for staining,

we found that both CD25 and CD132 were accumulated in the

T-T interfaces, although the former in particular was not always

uniformly expressed at high amounts, as it is upregulated to

a varying extent in individual T cells over activation. Assessment

of accumulation of surface proteins is difficult for multicellular

clusters when all of the cells in the clusters express the receptor

and is also subject to artifacts due to a local increase of total

membrane in the synaptic region (typically, more than two cells

contribute membrane to the same detection space). To control

for this factor, we costained cells with lipophilic DiIC, a far-red

dye that intercalates into membranes and thus is a surrogate

marker for local membrane density. We demonstrated that re-

gions of T-T synapses were also enriched in DiIC staining

(Figure 7A). By comparing the normalized cell surface staining

intensities along the surface to DiIC staining, we demonstrated

that CD25 enrichment typically was no greater in the synaptic re-

gion (highlighted by arrows) as compared to total membrane ac-

cumulation (Figure 7B) and may in fact be more highly repre-

sented outside of the contact region. In contrast, CD132, the

signaling subunit, showed strong accumulation in the synaptic

region, even when compared to the total membrane. This accu-

mulation typically corresponded to a prominent dot, which was

evident in the contacts as visualized with CD132 or in the

CD132-DiIC overlay.

IL-2 signaling through CD122 and the common gamma chain

(CD132; gc) triggers association of STAT5 with the membrane

and coordinates its subsequent phosphorylation by Jak kinase

family members (Lin and Leonard, 2000). When aggregated

T-T clusters were stained for the phosphorylated form of STAT5

(p-STAT5), substantially more p-STAT5 accumulated within

clustered T cells than in ‘‘free’’ cells found outside the confines

of a cluster (Figures 7C and 7D). In contrast to free T cells, the

mean fluorescence intensity (MFI) of p-STAT5 within clusters

did not adhere to a normal distribution; rather, 37% of clustered

cells were markedly brighter for p-STAT5 than the brightest free

cell (Figure 7D).

In addition, the vast majority of clustered T cells examined

showed p-STAT5 puncta facing inward toward other T cells,

strongly suggesting a local activation of this molecule at the

site of T-T contacts (Figures 7E and 7F). Some of these puncta

also faced T-DC contacts, consistent with localized stimulation

of gc cytokine receptors at these synapses. Similar to that

seen with pericentrin (Figure 5A), p-STAT5 polarization was spe-

cific, irrespective of the available amount of T-T versus free

membrane surface (Figure 7F). p-STAT5 and IL-2 were polarized

in the same direction at T-T interfaces in 75% of interfaces ana-

lyzed (in 31 counted clusters) (Figure 7G). This polarization of
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Figure 7. IL-2 Receptor Signaling across

T-T Synapses

(A) Purified CD4+ T cells were activated for 19 hr

with PMA and ionomycin and stained with anti-

bodies to CD25 and CD132 and with the mem-

brane-staining dye DiIC. Overlays of CD25-DiIC

and CD132-DiIC are shown in order to accentuate

regions at which antibody staining intensity

exceeded membrane intensity.

(B) A line scan (starting from at the back of the con-

tact, shown overlaid onto the DIC image in [A]) of

the membrane domain of a single T cell is shown

compared for the three stains at the same focal

place. Normalized intensities were compared on

a pixel-by-pixel basis and demonstrate a peak of

CD132 accumulation in the central contact region.

(C and E) OT-II CD4+ T cells were activated for

20 hr with actin-CFP+ BMDCs prepulsed with

OVA 323 (10 mg/ml). Permeabilized clusters were

stained with anti-phospho-STAT5 antibody. In

(C), the image is shown as a 3D maximal-intensity

projection, and p-STAT5 stain is represented in

white, with arrows indicating free cells. In (E),

DCs are represented in blue on the wide-field

DIC overlay with p-STAT5 antibody in red; white

arrows indicate p-STAT5 localized in toward

a DC, and the green arrow indicates p-STAT5

pointing inward toward a T cell. p-STAT5 localiza-

tion is graphically represented as the percent of

p-STAT5+ T cells pointing in toward a facing T

cell (green bar) or pointing away from a neighboring

T cell for all p-STAT5+ T-T pairs (left graph in [E])

and as the percent of p-STAT5+ T cells pointing to-

ward a DC (white bar) or away from the DC (black

bar) for all p-STAT5+ T-DC pairs (right graph in [E]).

*p < 0.008, **p < 0.00001.

(D and F) CD4+ T cells were activated for 19 hr with

PMA and ionomycin. Clusters were harvested and

stained as above. In (D), a 3D projection of the

entire cell volume is shown, and p-STAT5 stain

is represented in white, with arrows indicating

free cells. The graph represents the frequency of

p-STAT5 fluorescence intensities (with background

subtracted) for clustered (gray bars) and free (black bars) cells. In (F), p-STAT5 is red on the wide-field DIC overlay; white arrows indicate p-STAT5 localized in

toward a T cell. The graph represents the actual percent of p-STAT5 facing ‘‘in’’ (black bars) versus the predicted percent of p-STAT5 that would be expected to

face ‘‘in’’ (gray bars) if the polarization were due to the percent of available T-T membrane interface (x axis). *p = 0.0192, **p = 0.0011 by chi-square goodness-of-

fit test.

(G) CD4+ T cells were stimulated with PMA and ionomycin for 18 hr and stained for anti-p-STAT5 and anti-IL-2; cells were costained with DAPI. Shown are DIC

(leftmost panel); IL-2 (red, second panel from left); p-STAT5 (green, second panel from right); and an overlay of IL-2 (red), p-STAT5 (green), and DAPI (blue) (right-

most panel). Arrows indicate the following: green, localization of p-STAT5 only; red, localization of IL-2 only; yellow, colocalization of p-STAT5 and IL-2.

Scale bars = 10 mm. Data are representative of two independent experiments.
p-STAT5 and IL-2 toward one another on facing T cells is similar

to the mutual exclusion of IL-2 production and STAT5 activation

observed by flow cytometry in previous studies (Long and Adler,

2006) and emphasizes the importance of paracrine IL-2 signaling

in facilitating T cell activation. Thus, T-T synapses facilitate syn-

apse-based IL-2 signaling, consistent with polarized secretion

from the cells across the synapse.

DISCUSSION

T-T clusters have long been considered a correlate of efficient T

cell activation. Here, we supply new evidence that activated T

cell clusters result in the establishment of multifocal synapses

through which cytokines are directionally shared. These con-
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tacts are synapses by a number of distinct criteria used to com-

pare neuronal and immunological synapses (Dustin and Colman,

2002). These include that they are dynamic but stabilized, utilize

adhesive LFA-1 molecules for their formation, retain their distinct

identities with a gap between their apposed membrane surfaces,

and most importantly meet the functional criteria of facilitating di-

rected secretion via polarizing the MTOC as well as signaling

molecules IL-2 and p-STAT5. We also provide evidence that

these interactions are functionally important insofar as T cells

that form these contacts generate stronger signals compared

to those that activate without cell-cell contact.

Interestingly, T-T association in vivo and in vitro occurs not

only during stable interactions with APCs but also during swarm-

ing interactions, when clusters are dynamic. Recent evidence
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suggests that the IS between a T cell and APC is in fact a more

dynamic structure than initially recognized, with PKCq-driven mi-

gration phases required for IL-2 production (Sims et al., 2007).

Transient interactions between T cells and APCs have been de-

scribed as a period for augmentation of antigenic signals (Miller

et al., 2004) and may, in the case of T-T interactions, be used

for enhanced IL-2 signaling and subsequent T cell activation,

potentially at the onset of proliferation.

The specificity by which activated T cells cluster remains to be

discovered. Our data show, as has been demonstrated previ-

ously (Rothlein and Springer, 1986; Rothlein et al., 1986; van

Kooyk et al., 1989), that LFA-1 interactions between T cells are

an integral part of assembly. Although the upregulation of both

LFA-1 avidity and ICAM-1 expression during activation may in

part mediate specificity such that already activated T cells tend

to synapse (Rothlein et al., 1986), it is also possible that a unique

class of activation-driven receptors that favor synaptic interac-

tions remain to be identified. In this light, gc cytokines are not

themselves required for T-T interactions (C.A.S., J.D., and

M.F.K., unpublished data).

The localized distribution of gc cytokine receptors in T cells

activated in the context of a cell-cell contact also represents

an expansion of the complexity of this signaling pathway.

Although our data demonstrate clearly enhanced amounts of

p-STAT5 in T cell clusters overall and a substantial amount of

this within the nuclear region, we were surprised by the enrich-

ment of the phosphorylated (active) form directly adjacent to

the receptor. This observation in particular may indicate that

the localization of activating cytokine receptors along the mem-

brane may generate signalosomes whose molecular players are

determined by a wider variety of signaling receptors than the cy-

tokine itself. Unique localization in a synapse may thus underlie

the unique outcomes of IL-2 and IL-15 signaling, both of which

are generated in part through STAT5 (Lin and Leonard, 2000).

The T-T synaptic localization of cytokines and their receptors

may also support the ‘‘transpresentation’’ of gc cytokines on

their alpha chains. Recently, it has been shown that the IL-2Ra

chain in particular is critical in driving T cell help for the establish-

ment of CD8+ T cell effector functions and memory (Janssen

et al., 2005; Williams et al., 2006) and that this can be mimicked

by anti-IL-2-IL-2 antibody complexes (Boyman et al., 2006) when

the Fc portion of IL-2 antibody is preserved. The IL-2 crystal

structure revealed that binding of IL-2Ra to IL-2 may stabilize

a secondary binding site for presentation to IL-2Rb, with gc sub-

sequently recruited by this complex (Wang et al., 2005). Similar-

ities in the carboxyl termini of IL-15Ra (known to transpresent

IL-15) and IL-2Ra have strengthened the notion that IL-2 may

also be presented in trans (Chirifu et al., 2007). In our data, it is

notable that the accumulation of the gamma chain (CD132)

was much more pronounced than for the alpha chain (CD25),

perhaps suggesting that only the former is clustered whereas

the latter ‘‘catches’’ IL-2, perhaps relatively independently.

Alternatively, the localized secretion of IL-2 seen at these tight

T-T junctions may negate the need for IL-2Ra transpresentation

and allow for direct IL-2b/gc signaling.

Paracrine IL-2 has been shown to be sufficient for a fully func-

tional CD8+ memory T cell response in the case of a primary

helpless stimulation (Williams et al., 2006), a function that could

be fulfilled by CD4+ T cells directing or presenting IL-2 to CD8+ T
cells using the mechanism elaborated here. Chemokine-medi-

ated attraction of naive CD8+ T cells to areas of activated

CD4+ T-DC interactions has been described recently (Castellino

et al., 2006), and T-T interactions may facilitate the sharing of

IL-2 in this context.

The data presented herein are consistent with previous reports

showing that IL-2 polarizes toward APCs (Huse et al., 2006) but

also present the important extension that IL-2 secretion is also

specifically polarized between adjacent T cells. They are also

highly consistent with flow cytometry experiments demonstrat-

ing that IL-2-producing cells are rarely enriched with p-STAT5

(Long and Adler, 2006), a result that may, in this light, be caused

by synaptic interactions between IL-2 producers and those that

do not produce the cytokine but rather receive the resultant sig-

nals. In the case of a number of cytokines for which receptors lie

only on other T cells and not on APCs, this may represent an im-

portant means of influencing the activation and differentiation of

neighboring cells. In particular, T helper cell cytokine feedback

may allow a collection of clones to come to a quorum decision

and/or assist a preexisting differentiated clone to influence the

response of newly activating clones.

Our results here remain to be extended to known pathogenic

and clonally diverse situations. It is clear that our studies utilize

high precursor frequencies for a single peptide and would typi-

cally be higher than a normal naive repertoire for pathogens.

The inflammatory chemokines CCL3 and CCL4 have been

shown to attract activating T cells toward one another (Castellino

et al., 2006; Hugues et al., 2007) and may play a role in enhancing

synaptic exchange of cytokines. Notably, though, the mecha-

nism we describe may have greatest relevance in secondary re-

sponses or when expanded memory effector cells are activated

alongside new clones. We have also recently detected clusters

with similar dynamics in polyclonal T cell populations in the

draining LN during secondary responses to lymphocytic chorio-

meningitis virus (R.S.F., J. Hu, M.F.K., and M. Mattloubian, un-

published data). Synaptic contacts may, in this context, assist

lower-affinity clones or boost stimulation as antigen concentra-

tions decrease postinfection. As such, the cell biology of T-T

synapses is likely to prove important in numerous other immuno-

logical settings.

EXPERIMENTAL PROCEDURES

Mice

BALB/c, C57BL/6, Actin-CFP, LFA-1-deficient Itgb2�/�, DO11.10 TCR trans-

genic, and OT-II TCR transgenic mice were purchased from The Jackson Lab-

oratory. DO11.10 mice, which express a TCR specific for chicken ovalbumin

amino acids 323–339 (referred to as ‘‘OVA 323’’ here) in the context of MHC

class II molecule I-Ad, were crossed with BALB/c mice to obtain heterozygous

DO11.10 mice. OT-II transgenic mice also express an OVA peptide-specific

TCR that pairs with the CD4 coreceptor in the context of MHC class II molecule

I-Ab; OT-II mice were crossed with C57BL/6 mice to obtain heterozygous OT-II

mice. Actin-CFP mice express a transgenic construct containing an enhanced

cyan fluorescent protein gene under the control of a chicken b-actin promoter

coupled with the cytomegalovirus (CMV) immediate early enhancer. CD11c-

YFP mice (Lindquist et al., 2004) were a kind gift of M. Nussenzweig. All

mice were bred and maintained in accordance with the guidelines of the Lab

Animal Resource Center of the University of California, San Francisco.

Antibodies

Anti-LFA-1 (M17/4), fluorescein isothiocyanate-conjugated monoclonal anti-

CD25 (2A3), and biotinylated anti-IL-2 (JES6-5H4) were obtained from BD
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PharMingen. Biotinylated polyclonal anti-IL-15Ra was obtained from R&D

Systems. Anti-phospho-STAT5 (Tyr694) was obtained from Cell Signaling

Technology. Polyclonal anti-pericentrin was obtained from Covance. Second-

ary antibodies (Jackson Immunoresearch) utilized were rhodamine-conju-

gated donkey anti-rat, rhodamine-conjugated donkey anti-goat, and rhoda-

mine-conjugated streptavidin. Anti-CD3 (500.A2) and anti-CD28 (37N51.1)

antibodies were prepared from cultured hybridoma supernatant using

standard protein A/G antibody purification methods.

Immunocytochemistry

CD4+ T cells were purified from spleen and lymph node (LN) cells from

DO11.10 and OT-II mice by negative selection using a CD4+ negative selection

StemSep purification kit (Stem Cell Technologies, Inc.) or a MACS kit (Miltenyi

Biotec) with MACS LS+ selection columns. Purified CD4+ T cells (4 3 105) were

activated in 96-well flat-bottom plates (Fisher Scientific) for 19–20 hr at 37�C,

5% CO2 with 10 ng/ml PMA (Sigma-Aldrich) and 0.5 mg/ml ionomycin (Sigma-

Aldrich) or actin-CFP+ BMDCs (1 3 105) (grown in GM-CSF and IL-4; LPS-ma-

tured) and were prepulsed with OVA peptide (10 mg/ml; AnaSpec). Medium

used was RPMI 1640 (GIBCO) supplemented with 10% fetal calf serum

(JRH Biosciences), L-glutamine (2 mM; UCSF Cell Culture Facility), penicil-

lin/streptomycin (100 units/ml and 100 mg/ml, respectively; GIBCO), and b-

mercaptoethanol (50 mM; Sigma) (R10 medium). Staining was then performed

at room temperature (RT). Briefly, cell clusters were gently harvested and fixed

to polylysine-coated Superfrost slides (VWR) with 1% paraformaldehyde (PFA;

Electron Microscopy Services) for 10 min, and slides were then centrifuged to

adhere the cells to the slide. Fixed cells were blocked in wash buffer with 1%

FCS (and 2% normal donkey serum for slides where secondary donkey anti-

bodies were used) and permeabilized for 30 min with 0.02% saponin (Sigma)

in PBS. Cells were incubated for 60 min with primary antibodies, washed

extensively, and stained with secondary antibody for 60 min. DAPI (4’,6-diami-

dino-2-phenylindole) was used in the final wash where indicated. Cells were

then washed overnight and treated with antifade reagent (Bio-Rad), after

which slides were sealed and imaged. A modified Zeiss Axiovert 200M micro-

scope with a Plan Neofluar 40X objective was used for imaging experiments.

The microscope was fitted with dual excitation and emission filter wheels

and a Photometrics Coolsnap HQ camera. The imaging and control software

used was MetaMorph (Universal Imaging, Molecular Devices Corp.).

For experiments where DiIC was used to quantify membrane, cells were

stained with DiIC (DiIC18, 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocya-

nine perchlorate, Invitrogen) for 5 min at RT prior to fixation and staining.

To determine the percentage of total pericentrin-, IL-2-, or p-STAT5-positive

T cells with pericentrin, IL-2, or p-STAT5 facing toward or away from another

T cell, only the cells in the outermost layer of a cluster (i.e., where the marker

could potentially face toward or away from an adjacent cell) were counted. The

marker was scored as facing toward an adjacent T cell if it was within the first

third of the cell membrane juxtaposed to another T cell membrane. To deter-

mine the percentage of total IL-2- or p-STAT5-positive T cells with IL-2 or p-

STAT5 facing toward or away from a DC, all cells were counted, as in all in-

stances the marker could potentially face toward or away from the DC. Line

scans were performed in MetaMorph, and intensities along the line were nor-

malized by dividing by the sum of the total intensities of all points along the

membrane.

Electron Microscopy

12 3 106 BALB/c WT CD4+ T cells were stimulated with PMA (5 ng/ml) and ion-

omycin (125 ng/ml) in 3 ml of R10 medium in a six-well plate. Eighteen hours

poststimulation, 3 ml of prewarmed 3% glutaraldehyde/1% PFA (0.1 M caco-

dylate buffer [pH 7.4]) was applied, and cells were fixed at 37�C for 20 min and

stored at 4�C. Fixed cells were then rinsed in water, postfixed in reduced OsO4

(2% OsO4 + 1.5% potassium ferrocyanide, Sigma, prepared fresh), and

stained en bloc with uranyl acetate before being dehydrated in ethanol,

cleared in propylene oxide, and embedded in eponate 12 (Ted Pella Co.).

Thin sections were cut with a Leica Ultracut UCT microtome and examined

under a Philips Tecnai 10 electron microscope.

Cluster Analysis

Purified CD4+ DO11.10 TCR transgenic T cells were stimulated with PMA and

ionomycin as described above or with plate-bound CD3 antibody (flat-bottom

246 Immunity 29, 238–248, August 15, 2008 ª2008 Elsevier Inc.
96 well plates precoated with 50 ml/well antibody for 1 hr at 37�C or overnight at

4�C and washed extensively) in titrated concentrations from 0.1 to 1 mg/ml and

soluble CD28 antibody (added at beginning of assay at 5 mg/ml). LFA-1

antibody (20 mg/ml) was added 18 hr after initial stimulation, and wells were

photographed at 20 hr. Wells were photographed at 1–4 spots per well (2–3

wells per condition) at noted the time points, and cluster area was measured

with MetaMorph software. Where indicated, BMDCs were labeled with

CMAC (7-amino-4-chloromethylcoumarin, Invitrogen).

For time-lapse microscopy of clusters, CD4+ T cells were purified from

C57BL/6 mice, and some of the purified T cells were labeled with carboxyfluor-

escein diacetate succinimidyl ester (CFSE; Invitrogen). 3 3 105 T cells (90%

unlabeled and 10% CFSE labeled, in R10 medium with 0.1% low-melt

agarose) were stimulated by PMA (5 ng/ml) and ionomycin (125 ng/ml) in

eight-well Lab-Tek chambers (Nunc). Time-lapse microscopy was performed

18 hr after stimulation.

IL-2 Capture Assay

CD4+ T cells purified from BALB/c WT mice were coated with mouse IL-2

catch reagent from a mouse IL-2 secretion assay detection kit (Miltenyi Biotec)

by incubating T cells in a 203 dilution of IL-2 catch reagent in R10 medium for

15 min in ice and washing once with R10 medium. Then, the IL-2 catch

reagent-coated T cells were stimulated with PMA/ionomycin in a flat-bottom

96-well plate for 19 hr. Activated T cells were transferred to eight-well Lab-

Tek chambered coverslips (Nunc) coated with polylysine, incubated 15 min

at 37�C with 5% CO2, spun at 1500 rpm for 5 min, fixed with 1% PFA for 15 min

at 4�C, and stained with phycoerythrin-conjugated IL-2 detection antibody

(1:20 dilution in R10 medium). Finally, 1% low-melt agarose was added to

the wells, and Lab-Tek wells were spun at 1500 rpm at RT. Samples embed-

ded in agarose gel were examined with a spinning disk confocal microscope

(Yogogawa). Single-plane bright-field images and z stacks of red fluorescence

images (0.4 mm intervals) were acquired with a 403 objective lens (Nikon, NA

1.3). Acquired images were analyzed using MetaMorph. Fluorescence

intensity was integrated over the volume of single cells or clustered cells after

background subtraction. For clustered cells, the integrated fluorescence in-

tensity was divided by the number of cells in the clusters to obtain integrated

fluorescence intensity per cell.

Statistical Analyses

The chi-square test and Student’s t test were utilized as indicated in the text.

All p values < 0.05 were considered significant.

TPLSM Acquisition

CD4+ T cells purified from DO11.10 or OT-II mice as described above were

labeled with CFSE (carboxyfluorescein diacetate succinimidyl ester, Invitro-

gen) or CMTMR (5-(and-6)-[4-chloromethyl(benzoyl)amino] tetramethylrhod-

amine, Invitrogen) at 5 mM for 10 min at RT. Cells were washed extensively,

and 5 3 106 dye-labeled cells were intravenously transferred to WT BALB/c

or C57BL/6 CD11c-YFP recipients. Twenty-four hours later, mice were immu-

nized s.c. in the footpads with 25 mg OVA peptide emulsified in CFA (Sigma) or

PBS-CFA as a control or were left unimmunized as a control. A further 24 hr

later, popliteal LNs were immobilized on coverslips with the hilum facing

away from the objective. A custom resonant-scanning instrument (Tang

et al., 2006) containing a four-photomultiplier tube operating at video rate

was used for two-photon microscopy. LNs were maintained at 36�C in RPMI

medium bubbled with 95% O2/5% CO2 and were imaged through the capsule

distal to the hilum. Samples were excited with a 5 W Mai Tai Ti:Sapphire laser

(Spectra-Physics) tuned to a wavelength of 810 nm, and emission wavelengths

of 500–540 nm (for CFSE) and 380–420 nm (for detection of second-harmonic

emission) were collected. A custom four-dimensional acquisition module in

VideoSavant digital video recording software (IO Industries) was utilized for

image acquisition. Each LN was first surveyed in a raster scan for the presence

of transferred cells. Adjacent z stacks of up to 350 mm encompassing the top

xy space of the LN were collected. For time-lapse acquisition, each xy plane

spanned 330 mm 3 230 mm at a resolution of 0.6 mm per pixel, and ten

video-rate frames were averaged, giving an effective collection time of approx-

imately 330 ms per image. Images of up to 30 xy planes with 5 mm z spacing

were acquired every 30 s for 30 min. Images were analyzed with Imaris

software.
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Dwell time of T-T interactions was measured by tracking the length of time

that a given T cell remained in close association (<10 mm) with another T

cell. The measured value does not consider additional numbers of associated

cells. For example, in some images, a T cell pair joined a second T-T pair and

then separated. When each pair still retained a T-T contact, this additional con-

tact was not considered, and the dwell time represents when a given T cell

ceased to have any T-T association.

SUPPLEMENTAL DATA

Supplemental Data include one figure and six movies and can be found with

this article online at http://www.immunity.com/cgi/content/full/29/2/238/

DC1/.
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